• Title/Summary/Keyword: Distribution Network Communication Security

Search Result 112, Processing Time 0.044 seconds

The Design and Implementation of a Security Management Server for Pre-Distributed Key Exchange Method and Lightweight Key Distribution Protocol for Mobile Ad-hoc Node (이동 Ad-hoc 노드용 사전 키 분배 기법 및 경량 키 분배 프로토콜을 위한 보안관리 서버 시스템 설계 및 구현)

  • Yang, Jong-Won;Seo, Chang-Ho;Lee, Tae-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • The Mobile Ad-hoc network does environmental information which an individual collects in nodes which are many as the kernel of the USN technology based on the radio communication. And it is the latest network description delivering critical data to the destination location desiring through a multi-hop. Recently, the Ad-hoc network relative technique development and service are activated. But the security function implementation including an authentication and encoding about the transmitted packets, and etc, is wirelessly the insufficient situation on the Ad-hoc network. This paper provides the security service of key exchange, key management. entity authentication, data enciphering, and etc on the Mobile Ad-hoc network. It implements with the Ad-hoc network security management server system design which processes the security protocol specialized in the Ad-hoc network and which it manages.

  • PDF

A Security Protocol for Swarming Technique in Peer-to-Peer Networks (피어 투 피어 네트워크에서 스워밍 기법을 위한 보안 프로토콜)

  • Lee, Kwan-Seob;Lee, Kwan-Sik;Lee, Jang-Ho;Han, Seung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1955-1964
    • /
    • 2011
  • With fast deployment of high-speed networks and various online services, the demand for massive content distribution is also growing fast. An approach that is increasingly visible in communication research community and in industry domain is peer-to-peer (P2P) networks. The P2P swarming technique enables a content distribution system to achieve higher throughput, avoid server or network overload, and be more resilient to failure and traffic fluctuation. Moreover, as a P2P-based architecture pushed the computing and bandwidth cost toward the network edge, it allows scalability to support a large number of subscribers on a global scale, while imposing little demand for equipment on the content providers. However, the P2P swarming burdens message exchange overheads on the system. In this paper, we propose a new protocol which provides confidentiality, authentication, integrity, and access control to P2P swarming. We implemented a prototype of our protocol on Android smart phone platform. We believe our approach can be straightforwardly adapted to existing commercial P2P content distribution systems with modest modifications to current implementations.

Quantum Key Distribution System integrated with IPSec (양자키분배와 IPSec을 결합한 네트워크 보안 장치 연구)

  • Lee, Eunjoo;Sohn, Ilkwon;Shim, Kyuseok;Lee, Wonhyuk
    • Convergence Security Journal
    • /
    • v.21 no.3
    • /
    • pp.3-11
    • /
    • 2021
  • Most of the internet security protocols rely on classical algorithms based on the mathematical complexity of the integer factorization problem, which becomes vulnerable to a quantum computer. Recent progresses of quantum computing technologies have highlighted the need for applying quantum key distribution (QKD) on existing network protocols. We report the development and integration of a plug & play QKD device with a commercial IPSec device by replacing the session keys used in IPSec protocol with the quantum ones. We expect that this work paves the way for enhancing security of the star-type networks by implementing QKD with the end-to-end IP communication.

Blockchain for Securing Smart Grids

  • Aldabbagh, Ghadah;Bamasag, Omaimah;Almasari, Lola;Alsaidalani, Rabab;Redwan, Afnan;Alsaggaf, Amaal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.255-263
    • /
    • 2021
  • Smart grid is a fully-automated, bi-directional, power transmission network based on the physical grid system, which combines sensor measurement, computer, information communication, and automatic control technology. Blockchain technology, with its security features, can be integrated with Smart Grids to provide secure and efficient power management and transmission. This paper dicusses the deployment of Blockchain technology in Smart Grid. It presents application areas and protocols in which blockchain can be applied to in securing smart grid. One application of each area is explored in detail, such as efficient peer-to-peer transaction, lower platform costs, faster processes, greater flexibility in power generation to transmission, distribution and power consumption in different energy storage systems, current barriers obstructing the implementation of blockchain applications with some level of maturity in financial services but concepts only in energy and other sectors. Wide range of energy applications suggesting a suitable blockchain architecture in smart grid operations, a sample block structure and the potential blockchain technicalities employed in it. Also, added with efficient data aggregation schemes based on the blockchain technology to overcome the challenges related to privacy and security in the smart grid. Later on, consensus algorithms and protocols are discussed. Monitoring of the usage and statistics of energy distribution systems that can also be used to remotely control energy flow to a particular area. Further, the discussion on the blockchain-based frameworks that helps in the diagnosis and maintenance of smart grid equipment. We have also discussed several commercial implementations of blockchain in the smart grid. Finally, various challenges have been discussed for integrating these technologies. Overall, it can be said at the present point in time that blockchain technology certainly shows a lot of potentials from a customer perspective too and should be further developed by market participants. The approaches seen thus far may have a disruptive effect in the future and might require additional regulatory intervention in an already tightly regulated energy market. If blockchains are to deliver benefits for consumers (whether as consumers or prosumers of energy), a strong focus on consumer issues will be needed.

Wireless Security Transmission Using Algorithm of Multiple-Key Exchange (다중 키 교환 알고리즘을 이용한 무선 보안 전송 기법)

  • Ryu, Dong-Ju;Kim, Gwang-Hyun;Noh, Bong-Nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.807-810
    • /
    • 2005
  • Constructed network test environment of wireless base for confidentiality guarantee of data and safe transmission that is transmited at Mobile node of Wireless Network environment in this paper. And, progressed research about IKEv2's Multiple-Key Exchange mechanism for efficient security transmission that use IPSec that is built-in to basis to IPv6 of Mobile environment. Have several key to single terminal to solve that is seam at hand off packet transmission process of Mobile Node in Wireless Network and Re-setting for Key and Re-exchange problem that happen frequently and studied technology that move. Key exchange protocol that is used for an experiment loads basically in MIPv6 and used IKEv2 protocol that is used for management and distribution of reliable encryption key between both end. Using network simulator of SSFNet(Scalable Simulation Framework Network Models) in this paper Key exchange delay value of IKEv2's security transmission analyzing comparison Performance measure and studied about problem and improvement way accordingly.

  • PDF

Intrusion Detection Methodology for SCADA system environment based on traffic self-similarity property (트래픽 자기 유사성(Self-similarity)에 기반한 SCADA 시스템 환경에서의 침입탐지방법론)

  • Koh, Pauline;Choi, Hwa-Jae;Kim, Se-Ryoung;Kwon, Hyuk-Min;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.2
    • /
    • pp.267-281
    • /
    • 2012
  • SCADA system is a computer system that monitors and controls the national infrastructure or industrial process including transportation facilities, water treatment and distribution, electrical power transmission and distribution, and gas pipelines. The SCADA system has been operated in a closed network, but it changes to open network as information and communication technology is developed rapidly. As the way of connecting with outside user extends, the possibility of exploitation of vulnerability of SCADA system gets high. The methodology to protect the possible huge damage caused by malicious user should be developed. In this paper, we proposed anomaly detection based intrusion detection methodology by estimating self-similarity of SCADA system.

Scenario-based Future Infantry Brigade Information Distribution Capability Analysis (시나리오 기반의 미래 보병여단 정보유통능력 분석 연구)

  • Junseob Kim;Sangjun Park;Yiju You;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.139-145
    • /
    • 2023
  • The ROK Army is promoting cutting-edge, future-oriented military development such as a mobile, intelligent, and hyper-connected Army TIGER system. The future infantry brigade plans to increase mobility with squad-level tactical vehicles to enable combat in multi-domain operations and to deploy various weapon systems such as surveillance and reconnaissance drones. In addition, it will be developed into an intelligent unit that transmits and receives data collected through the weapon system through a hyper-connected network. Accordingly, the future infantry brigade will transmit and receive more data. However, the Army's tactical information communication system has limitations in operating as a tactical communication system for future units, such as low transmission speed and bandwidth and restrictions on communication support. Therefore, in this paper, the information distribution capability of the future infantry brigade is presented through the offensive operation scenario and M&S.

Discernment of Android User Interaction Data Distribution Using Deep Learning

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.143-148
    • /
    • 2022
  • In this paper, we employ deep neural network (DNN) to discern Android user interaction data distribution from artificial data distribution. We utilize real Android user interaction trace dataset collected from [1] to evaluate our DNN design. In particular, we use sequential model with 4 dense hidden layers and 1 dense output layer in TensorFlow and Keras. We also deploy sigmoid activation function for a dense output layer with 1 neuron and ReLU activation function for each dense hidden layer with 32 neurons. Our evaluation shows that our DNN design fulfills high test accuracy of at least 0.9955 and low test loss of at most 0.0116 in all cases of artificial data distributions.

Simulation Analysis of Network Load of Application Level Security Protocol for Smart grid (시뮬레이션을 이용한 스마트 그리드 통신망 상의 응용 계층 보안 프로토콜의 부하 분석)

  • Lee, Kwang-Sik;Han, Seung-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • Smart grid is a modernized electrical grid that uses information and communication technologies to gather and act on information, such as information about the behaviors of suppliers and consumers, in an automated fashion to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity. However, with the advent of cyber crime, there are also concerns on the security of the infrastructure, primarily that involving communications technologies. In this work, we make an in-depth investigation on the issue of security services and network loads on Smart grid. Through simulation, we analyze the relations between security services and network loads. The experimental results of this study will contribute toward designing an advanced Smart grid system that offers better quality of services. Also, the approach proposed in this study can be utilized to derive new and valuable insights in security aspects.

A Design of Block Cryptosystem using Multiple Nonlinear S-box Function (다중 비선형 S-box 함수를 이용한 블록 암호시스템 설계)

  • 정우열;이선근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.90-96
    • /
    • 2001
  • The development of network and the other communication-network can generate serious social problems. So. it is highly required to control security of network. These problems related security will be developed and keep up to confront with anti-security part such as hacking. cracking. In this paper. the proposed multiple nonlinear S-box function which is capable to cipher regardless of key distribution or key-length for these definite problem is proposed and designed in hardware. The proposed multiple nonlinear S-box function increase secret level from using a nonlinear function in multiply for key data utilized in cryptography that generates MDP and MLP in maximum is proposed to prevent cryptography analysis. The designed the multiple nonlinear S-box function in this paper performed synthesization and simulation using Synopsys Ver. 1999.10 and VHDL