• Title/Summary/Keyword: Distribution Coefficient

Search Result 2,602, Processing Time 0.032 seconds

The Construction and Application of Effective Coefficient for Aerosol Size Distribution

  • Lin, Tang-Huang;Liu, Gin-Rong;Chen, A.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.594-596
    • /
    • 2003
  • Due to the fact that the composition and variability of aerosols is considered rather complex, it is difficult to employ a simple and straightforward physical model in calculating the aerosol size distribution in the absence of actual data. This complicates the already difficult retrieval of various atmospheric parameters from remotely sensed data. Thus, the main purpose of this study is trying to find an effective aerosol size coefficient that is stable, and can depict the particle size distribution. This paper also attempts to construct an 'effective aerosol size coefficient' database for each respective season, where it can quickly and effectively supply pertinent information of the atmosphere's opacity.

  • PDF

Jackknife Estimation of the Coefficient of Variation in the Pareto Distribution

  • Woo, Jung-Soo;Kang, Suk-Bok
    • Journal of the Korean Statistical Society
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 1984
  • In this paper, the means of the estimators for the coefficient of variation (CV) in an underlying Pareto distribution are expressed in terms of confluent hypergeometric functions. The numericla values of the biases for the CV estimators in the Pareto distribution are also obtained.

  • PDF

Seismic response of spring-damper-rolling systems with concave friction distribution

  • Wei, Biao;Wang, Peng;He, Xuhui;Jiang, Lizhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • The uneven distribution of rolling friction coefficient may lead to great uncertainty in the structural seismic isolation performance. This paper attempts to improve the isolation performance of a spring-damper-rolling isolation system by artificially making the uneven friction distribution to be concave. The rolling friction coefficient gradually increases when the isolator rolls away from the original position during an earthquake. After the spring-damper-rolling isolation system under different ground motions was calculated by a numerical analysis method, the system obtained more regular results than that of random uneven friction distributions. Results shows that the concave friction distribution can not only dissipate the earthquake energy, but also change the structural natural period. These functions improve the seismic isolation efficiency of the spring-damper-rolling isolation system in comparison with the random uneven distribution of rolling friction coefficient, and always lead to a relatively acceptable isolation state even if the actual earthquake significantly differs from the design earthquake.

A Study on Flow Coefficient and Flow Characteristics for Butterfly Valve by Numerical Analysis (수치해석에 의한 버터플라이 밸브의 유량계수 및 유동특성에 관한 연구)

  • Kwak, Kyung-Min;Cho, Ji-Sung;Kim, Jin-Dae;Lee, Jung-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-66
    • /
    • 2012
  • The objective of this study is to simulate flow coefficient and flow characteristics such as velocity and pressure distribution for butterfly valve. Butterfly valves used in this study are 65A, 80A and 100A, in size, and of which the opening angle is varied. The flow coefficient, Kv, increases as the disc opening and valve size are increase. When using flow coefficient meanwhile specific curve of flow rate is also determined. The flow velocity between disc and seat increase as the disc opening decrease. The re-circulating zone is also observed in downstream behind disc.

Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel

  • Tong, L.L.;Hou, L.Q.;Cao, X.W.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • The analysis of the fluid flow characteristics in reactor pressure vessel is an important part of the hydraulic design of nuclear power plant, which is related to the structure design of reactor internals, the flow distribution at core inlet and the safety of nuclear power plant. The flow distribution and mixing characteristics in the pressurized reactor vessel for the 1000MWe advanced pressurized water reactor is analyzed by using Computational Fluid Dynamics (CFD) method in this study. The geometry model of the full-scaled reactor vessel is built, which includes the cold and hot legs, downcomer, lower plenum, core, upper plenum, top plenum, and is verified with some parameters in DCD. Under normal condition, it is found that the flow skirt, core plate holes and outlet pipe cause pressure loss. The maximum and minimum flow coefficient is 1.028 and 0.961 respectively, and the standard deviation is 0.019. Compared with other reactor type, it shows relatively uniform of the flow distribution at the core inlet. The coolant mixing coefficient is investigated with adding additional variables, showing that mass transfer of coolant occurs near the interface. The coolant mainly distributes in the 90° area of the corresponding core inlet, and mixes at the interface with the coolant from the adjacent cold leg. 0.1% of corresponding coolant is still distributed at the inlet of the outer-ring components, indicating wide range of mixing coefficient distribution.

A Stochastic Analysis in Fatigue Strength of Degraded Steam Turbine Blade Steel (열화된 증기 터빈블레이드의 피로강도에 대한 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.262-267
    • /
    • 2001
  • In this study, the Reliability of degraded steam turbine blade was evaluated using the limited fatigue data. The statistical estimation of limited fatigue data implies that some unknown uncertainties which may be involved in fatigue reliability analysis. Therefore, an appropriate distribution in the fatigue strength was determined by the characteristic distribution - linear correlation coefficient, fatigue physics, error parameter. 3-parameter Weibull distribution is the most appropriate distribution to assume for infinite region. The load applied on the blade is mainly tensile. The maximum Von-Mises stress is 219.4 MPa at the steady state service condition. The failure probability($F_p$) derived from the strength-stress interference model using Monte carlo simulation under variable service condition is 0.25% at the 99.99% confidence level.

  • PDF

Effect of Dissolved Organic Matter and Cationic Surfactant on the Distribution of HOC in soil/water system (토양/수체 내 양이온 계면활성제와 용존유기물이 소수성유기화합물의 분포에 미치는 영향 연구)

  • 문정원;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.281-285
    • /
    • 2000
  • The effect of the presence of dissolved organic matters(DOM) on the binding of phenanthrene to cetylpyridinium chloride(CPC) coated sand was investigated. The distribution coefficient of phenanthrene increased with increase of sufactant coverage, and decreased with the presence of dissolved organic matters except for the 1.600mg/g coverage case. Both Aldrich humic acid and extracted dissolved organic matter showed the similar tendency. For the quantification of the overall distribution coefficient, this study presented mass distribution model and estimated the sorption equilibrium coefficients of hydrophobic organic compounds(HOCs) in multi system. The suggested model combined a series of sorption equilibrium relationships including the adsorption of DOMs on sorbents, the binding between HOCs and DOMs, and the sorption of HOCs on sorbents with or without DOMs.

  • PDF

UNIFORM DISTRIBUTIONS ON CURVES AND QUANTIZATION

  • Joseph Rosenblatt;Mrinal Kanti Roychowdhury
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.431-450
    • /
    • 2023
  • The basic goal of quantization for probability distribution is to reduce the number of values, which is typically uncountable, describing a probability distribution to some finite set and thus to make an approximation of a continuous probability distribution by a discrete distribution. It has broad application in signal processing and data compression. In this paper, first we define the uniform distributions on different curves such as a line segment, a circle, and the boundary of an equilateral triangle. Then, we give the exact formulas to determine the optimal sets of n-means and the nth quantization errors for different values of n with respect to the uniform distributions defined on the curves. In each case, we further calculate the quantization dimension and show that it is equal to the dimension of the object; and the quantization coefficient exists as a finite positive number. This supports the well-known result of Bucklew and Wise [2], which says that for a Borel probability measure P with non-vanishing absolutely continuous part the quantization coefficient exists as a finite positive number.

On Probability Distribution of Chloride Diffusion Coefficient for Recycled Aggregate Concrete

  • Ying, Jingwei;Xiao, Jianzhuang;Meng, Qiujiang
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • In predicating the probability distribution of chloride diffusion coefficient of recycled aggregate concrete ($D_{RAC}$), the morphological characteristics of three phases, i.e., the old attached mortar, the natural aggregate and the new mortar, should all be taken into account. The present paper attempts to develop a probability density evolution method (PDEM) to achieve this. After verifying the derived PDEM results with experimental results, the effects of old attached mortar to the $D_{RAC}$ are examined in a quantitative manner. It is found that (1) the variation of the attached mortar content is much sensitive to $D_{RAC}$; (2) given the probability distribution of the content and chloride diffusion coefficient of old mortar, the probability distribution of DRAC can be analysed based on the PDEM; and (3) the critical chloride diffusion coefficient at a certain assurance rate can be obtained by the PDEM. The analysis results of this investigation will be valuable to the durability design for RAC.

Estimation of Permeability Coefficient Using Fractal Dimension of Particle Size Distribution Curve in Granular Soils (조립토 입도분포곡선의 프랙탈차원을 이용한 투수계수의 예측)

  • Park Jae-Seong;Chang Pyoung-Wuck;Son Young-Hwan;Kim Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • Since particle size distribution curves are useful to estimate permeability of soil, many formulae for permeability coefficient (k) have been published using the parameter from the curves and factors, such as grain size, particle shape and void ratio of soils. However, the parameters such as $C_c,\;C_u$ and $D_n$ derived from only some discrete points on the curve are insufficient to represent the whole gradation. In this paper fractal dimension which is quite new concept and known to be able to represent the entire curve of particle size distribution is employed for the parameters. An empirical formula of permeability coefficient has been developed with fractal dimension and percent of finer than 0.075 mm. The formula developed from this study has confirmed its effectiveness by a series of laboratory tests and comparison to other published formulae. It is found that permeability coefficient is proportional to fractal dimension and inversely proportional to percent of fines.