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UNIFORM DISTRIBUTIONS ON CURVES AND
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Abstract. The basic goal of quantization for probability distribution is

to reduce the number of values, which is typically uncountable, describing
a probability distribution to some finite set and thus to make an approxi-

mation of a continuous probability distribution by a discrete distribution.
It has broad application in signal processing and data compression. In

this paper, first we define the uniform distributions on different curves

such as a line segment, a circle, and the boundary of an equilateral tri-
angle. Then, we give the exact formulas to determine the optimal sets

of n-means and the nth quantization errors for different values of n with

respect to the uniform distributions defined on the curves. In each case,
we further calculate the quantization dimension and show that it is equal

to the dimension of the object; and the quantization coefficient exists as

a finite positive number. This supports the well-known result of Bucklew
and Wise [2], which says that for a Borel probability measure P with non-

vanishing absolutely continuous part the quantization coefficient exists as

a finite positive number.

1. Introduction

‘Quantization’ refers to the process of approximating the continuous set of
values in the image data with a finite (preferably small) set of values with broad
application in engineering and technology (see [4,7,12]). Although the work of
quantization in engineering science has a long history, rigorous mathematical
treatment was given by Graf and Luschgy (see [6]). The quantization for a
probability distribution refers to the idea of estimating a given probability by
a discrete probability with a given number n of supporting points.

Let P denote a Borel probability measure on Rd, where d ≥ 1. For a finite
set α ⊂ Rd, the error

∫
mina∈α ∥x−a∥2dP (x) is often referred to as the cost or

distortion error for α, and is denoted by V (P ;α). For any positive integer n,
write Vn := Vn(P ) = inf{V (P ;α) : α ⊂ Rd, card(α) ≤ n}. Then, Vn is called
the nth quantization error for P . We assume that

∫
∥x∥2dP (x) < ∞ to make
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sure that there is a set α for which the infimum occurs (see [1, 5, 6, 8]). Such
a set α for which the infimum occurs and contains no more than n-points is
called an optimal set of n-means and the elements of an optimal set are called
optimal quantizers. In some literature it is also referred to as principal points
(see [9]). The numbers

D(P ) := lim inf
n→∞

2 log n

− log Vn(P )
, and D(P ) := lim sup

n→∞

2 log n

− log Vn(P )

are, respectively, called the lower and upper quantization dimensions of the
probability measure P . If D(P ) = D(P ), the common value is called the
quantization dimension of P and is denoted by D(P ). Quantization dimension
measures the speed at which the specified measure of the error tends to zero as n
approaches to infinity. For any s > 0, the two numbers lim infn→∞ n2/sVn(P )
and lim supn→∞ n2/sVn(P ) are, respectively, called the s-dimensional lower
and upper quantization coefficients for P . If the s-dimensional lower and upper
quantization coefficients are equal, we call it the s-dimensional quantization
coefficient for P . If the s-dimensional lower and the upper quantization coef-
ficients are finite and positive, then s equals the quantization dimension of P
(see [6]). It is well-known that for a Borel probability measure P with non-
vanishing absolutely continuous part limn→∞ n2/dVn(P ) is finite and strictly
positive (see [2]). This implies that the quantization dimension of a Borel
probability measure with non-vanishing absolutely continuous part equals the
dimension d of the underlying space. For a finite set α ⊂ Rd, the Voronoi
region generated by a ∈ α, denoted by M(a|α), is defined to be the set of all
elements in Rd which are nearest to a. The set {M(a|α) : a ∈ α} is called the
Voronoi diagram or Voronoi tessellation of Rd with respect to α. The point
a is called the centroid of its own Voronoi region if a = E(X : X ∈ M(a|α)),
where X is a P -distributed random variable. Let us now state the following
proposition (see [4, 6]).

Proposition 1.1. Let α be an optimal set of n-means, a ∈ α, and M(a|α) be
the Voronoi region generated by a ∈ α. Then, for every a ∈ α, (i) P (M(a|α)) >
0, (ii) P (∂M(a|α)) = 0, (iii) a = E(X : X ∈ M(a|α)), and (iv) P -almost surely
the set {M(a|α) : a ∈ α} forms a Voronoi partition of Rd.

Proposition 1.1 says that if α is an optimal set and a ∈ α, then a is the
conditional expectation of the random variable X given that X takes values
in the Voronoi region of a. Recently, the optimal quantization for uniform
distributions on different regions has been investigated by several authors, for
example, see [3, 10,11].

In this paper, there are three subsections. In Subsection 2.1, Subsection 2.2,
and Subsection 2.3, first we have defined the uniform distributions on a line seg-
ment, on a unit circle, and on the boundary of an equilateral triangle. Then, in
Theorem 2.1.1, Theorem 2.2.1, and Theorem 2.3.10, we give the exact formulas
to determine the optimal sets of n-means and the corresponding quantization
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errors for different values of n ∈ N. We have further shown that the quanti-
zation dimension of the uniform distribution in each case is one, which equals
the dimension of the line, circle, and the boundary of the equilateral triangle.
Moreover, we have shown that in each case the quantization coefficient exists
as a finite positive number. As described in Remark 2.4, once the optimal sets
of n-means are known for a line segment, a circle, and an equilateral triangle,
by giving an affine transformation, one can easily obtain them for any line seg-
ment, any circle, and the boundary of any equilateral triangle. We did not find
any literature where the optimal quantization for a probability distributions on
a curve has been investigated. Thus, our work in this paper can be considered
as a first advance in this direction. Finally, we would like to mention that the
technique used in this paper will be of great help to investigate the optimal
quantization for any distribution on any curve.

2. Main result

In this section, in three subsections, we give the main results of the paper.
Let i and j be the unit vectors in the positive directions of x1- and x2-axes,

respectively. By the position vector ã of a point A, it is meant that
−→
OA = ã. In

the sequel, we will identify the position vector of a point (a1, a2) by (a1, a2) :=
a1i+ a2j, and apologize for any abuse in notation. For any two vectors u⃗ and
v⃗, let u⃗ · v⃗ denote the dot product between the two vectors u⃗ and v⃗. Then,
for any vector v⃗, by (v⃗)2, we mean (v⃗)2 := v⃗ · v⃗. Thus, |v⃗| :=

√
v⃗ · v⃗, which is

called the length of the vector v⃗. For any two position vectors ã := (a1, a2) and

b̃ := (b1, b2), we write ρ(ã, b̃) := ∥(a1, a2)− (b1, b2)∥2 = (a1 − b1)
2 + (a2 − b2)

2,
which gives the squared Euclidean distance between the two points (a1, a2)
and (b1, b2). By E(X) and V := V (X), we represent the expectation and the
variance of a random variable X with respect to the probability distribution
under consideration. Let P and Q with position vectors p̃ and q̃ belong to an
optimal set of n-means for some positive integer n, and let D with position
vector d̃ be a point on the boundary of the Voronoi regions of the points P
and Q. Since the boundary of the Voronoi regions of any two points is the

perpendicular bisector of the line segment joining the points, we have |
−−→
DP | =

|
−−→
DQ|, i.e., (

−−→
DP )2 = (

−−→
DQ)2 implying (p̃− d̃)2 = (q̃ − d̃)2, i.e., ρ(p̃, d̃) = ρ(q̃, d̃).

In the sequel, such an equation will be referred to as a canonical equation. In
the paper, there are some decimal numbers; they are rational approximations
of some real numbers.

2.1. Optimal quantization for a uniform distribution on a line seg-
ment

Without any loss of generality we can assume the line segment as a closed
interval [a, b], where 0 < a < b < +∞. Let P be the uniform distribution
defined on the closed interval [a, b]. Let the probability density function for P
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Figure 1. Optimal configuration of n means with respect to
a uniform distribution on a line segment for 1 ≤ n ≤ 10.

is given by f . Then, we have

f(x) =

{
1

b−a if x ∈ [a, b],

0 otherwise,

implying dP (x) = P (dx) = f(x)dx = 1
b−adx.

The following theorem gives the optimal sets of n-means for all n ∈ N.

Theorem 2.1.1. Let P be the uniform distribution on the closed interval [a, b].
Then, the optimal set n-means is given by αn := {a+ 2i−1

2n (b− a) : 1 ≤ i ≤ n},
and the corresponding quantization error is Vn := Vn(P ) = (a−b)2

12n2 .

Proof. Let αn := {a1, a2, . . . , an} be an optimal set of n-means. Since the
points in an optimal set are the conditional expectations in their own Voronoi
regions, without any loss of generality, we can assume that a < a1 < a2 < · · · <
an < b. Then, by Proposition 1.1, we have

a1 = E(X : X ∈ [a,
1

2
(a1 + a2)]),(1)
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ai = E(X : X ∈ [
ai−1 + ai

2
,
ai + ai+1

2
]) for 2 ≤ i ≤ n− 1,(2)

an = E(X : X ∈ [
an−1 + an

2
, b]).(3)

By (1), we have

a1 =

∫ 1
2 (a1+a2)

a
xdP∫ 1

2 (a1+a2)

a
dP

=

∫ 1
2 (a1+a2)

a
xf(x)dx∫ 1

2 (a1+a2)

a
f(x)dx

=
1

4
(2a+ a1 + a2)

implying

(4) 2(a1 − a) = a2 − a1.

Similarly, by (2) and (3), we have

(5) ai−1 − ai = ai+1 − ai for 2 ≤ i ≤ n− 1, and an − an−1 = 2(b− an).

Combining the equations in (4) and (5), we have

(6) 2(a1 − a) = ai − ai−1 = 2(b− an) = k (say) for 2 ≤ i ≤ n

implying

(a1 − a) +

n∑
i=2

(ai − ai−1) + (b− an) =
k

2
+ (n− 1)k +

k

2
, i.e., b− a = nk.

Thus, putting k = b−a
n , by (6), we have

a1=a+
1

2n
(b−a), a2=a+

3

2n
(b−a), a3=a+

5

2n
(b−a), . . . , an=a+

2n− 1

2n
(b−a)

yielding the fact that αn := {a+ 2i−1
2n (b− a) : 1 ≤ i ≤ n} forms an optimal set

of n-means for P (see Figure 1). Notice that the probability density function
is constant, and the Voronoi regions of the points ai for 1 ≤ i ≤ n are of equal
lengths. This yields the fact that the distortion errors due to each ai are equal.
Hence, the nth quantization error Vn := Vn(P ) is given by

Vn =

∫
min
a∈αn

(x− a)2dP =
n

b− a

∫ 1
2 (a1+a2)

a

(x− a1)
2dx =

(a− b)2

12n2
.

Thus, the proof of the theorem is complete. □

Remark 2.1.2. By Theorem 2.1.1, we see that if Vn is the quantization error of

n-means for the uniform distribution on [a, b], then Vn = (a−b)2

12n2 . Thus,

D(P ) = lim
n→∞

2 log n

− log Vn
= lim

n→∞

2 log n

− log (a−b)2

12n2

= 1,

which equals the dimension of the line segment. Moreover, we have lim
n→∞

n2Vn =

(a−b)2

12 , which is a finite positive number.
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Figure 2. Optimal configuration of n means with respect to
a uniform distribution on a circle for 1 ≤ n ≤ 8.

2.2. Optimal quantization for a uniform distribution on a unit circle

Let L be the unit circle given by the parametric equations: L := {(x1, x2) :
x1 = cos θ, x2 = sin θ for 0 ≤ θ ≤ 2π}. Let the positive direction of the x1-axis
cut the circle at the point A, i.e., A is represented by the parametric value
θ = 0. Let s be the distance of a point on L along the arc starting from the
point A in the counterclockwise direction. Then,

ds =

√(dx1

dθ

)2

+
(dx2

dθ

)2

dθ = dθ.

Then, the probability density function (pdf) f(x1, x2) for P is given by

f(x1, x2) =

{
1
2π if (x1, x2) ∈ L,
0 otherwise.

Thus, we have dP (s) = P (ds) = f(x1, x2)ds = 1
2πdθ. Moreover, we know that

if θ̂ radians is the central angle subtended by an arc of length S of the unit

circle, then S = θ̂, and

P (S) =

∫
S

dP (s) =
1

2π

∫
S

dθ =
θ̂

2π
.

The following theorem gives the optimal sets of n-means and the nth quanti-
zation errors for all n ∈ N.

Theorem 2.2.1. Let αn be an optimal set of n-means for the uniform distri-
bution P on the unit circle x2

1 + x2
2 = 1 for n ∈ N. Then,

αn :=
{n

π

(
sin(

π

n
) · cos((2j − 1)

π

n
), sin(

π

n
) · sin((2j − 1)

π

n
)
)
: j = 1, 2, . . . , n

}
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forms an optimal set of n-means, and the corresponding quantization error is

given by 1− n2

π2 sin
2
(
π
n

)
.

Proof. Let αn := {a1, a2, . . . , an} be an optimal set of n-means for P for n ∈ N.
Let θ1 − θ0, θ2 − θ1, . . . , θn − θn−1 be the angles in radians subtended by the
Voronoi regions of the points a1, a2, . . . , an, and let the corresponding lengths
of the arcs be S1, S2, . . . , Sn, respectively, where θ0 = 0 and θn = 2π. Then,
Sk = θk − θk−1 for 1 ≤ k ≤ n. Thus, for 1 ≤ k ≤ n, we have

ak = E(X : X ∈ Sk) =
1

P (Sk)

∫
Sk

(i cos θ + j sin θ)dP

=
2π

θk − θk−1

∫ θk

θk−1

1

2π
(i cos θ + j sin θ)dθ,

which after simplification implies

ak =
1

θk − θk−1
(sin θk − sin θk−1, cos θk−1 − cos θk) .(7)

The nth quantization error is given by

Vn =

∫
min
a∈αn

∥(cos θ, sin θ)− a∥2dP

=
1

2π

n∑
k=1

∫ θk

θk−1

∥(cos θ, sin θ)− ak∥2dθ

=
1

2π

n∑
k=1

∫ θk

θk−1

((
cos θ − sin θk − sin θk−1

θk − θk−1

)
2 +

(
sin θ − cos θk−1 − cos θk

θk − θk−1

)2)
dθ

=
1

2π

n∑
k=1

(
θk − θk−1 + 2

(cos (θk−1 − θk)− 1)

(θk − θk−1)

)
=

1

2π

n∑
k=1

(
θk − θk−1 − 4

sin2 θk−θk−1

2

θk − θk−1

)
= 1− 2

π

n∑
k=1

sin2 θk−θk−1

2

θk − θk−1
.

The distortion error Vn being optimal, we must have ∂Vn

∂θk
= 0 for all k =

1, 2, . . . , n− 1, yielding the fact that

−
sin2 θk−θk−1

2

(θk − θk−1)2
+

sin(θk − θk−1)

(θk − θk−1)
+

sin2 θk+1−θk
2

(θk+1 − θk)2
− sin(θk+1 − θk)

(θk+1 − θk)
= 0

implying

(8)
sin2 θk−θk−1

2

(θk − θk−1)2
− sin(θk − θk−1)

(θk − θk−1)
=

sin2 θk+1−θk
2

(θk+1 − θk)2
− sin(θk+1 − θk)

(θk+1 − θk)
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for all k = 1, 2, . . . , n− 1. From the above recurrence relation, we have

(9)
sin2 θ1−θ0

2

(θ1 − θ0)2
− sin(θ1 − θ0)

(θ1 − θ0)
=

sin2 θk−θk−1

2

(θk − θk−1)2
− sin(θk − θk−1)

(θk − θk−1)

for k = 2, 3, . . . , n. This yields the fact that

θ1 − θ0 = θ2 − θ1 = θ3 − θ2 = · · · = θn − θn−1 =
2π

n
.

Thus, we have θk = 2πk
n for k = 1, 2, . . . , n. Hence, by (7), we deduce that

if αn := {a1, a2, . . . , an} is an optimal set of n-means, then ak = n
π

(
sin(πn ) ·

cos((2k−1)πn ), sin(
π
n )·sin((2k−1)πn )

)
for k = 1, 2, . . . , n (see Figure 2). Notice

that in the optimal set of n-means, the distortion errors contributed by each
point in their own Voronoi regions are equal. Thus, the quantization error for
n-means is given by

Vn = n
(
quanization error due to the point a1 in the opitmal set of n-means

)
= n

∫ 2π
n

0

∥(cos θ, sin θ)− (
n

2π
sin

2π

n
,
n

π
sin2

π

n
)∥2dP

= n

∫ 2π
n

0

1

2π
∥(cos θ, sin θ)− (

n

2π
sin

2π

n
,
n

π
sin2

π

n
)∥2dθ,

which after simplification yields Vn = 1 − n2

π2 sin
2 π

n . Thus, the proof of the
theorem is complete. □

Remark 2.2.2. By Theorem 2.2.1, we see that if Vn is the quantization error

of n-means for the uniform distribution on the circle, then Vn = 1− n2

π2 sin
2 π

n .
Thus,

D(P ) = lim
n→∞

2 log n

− log Vn
= lim

n→∞

2 log n

− log
(
1− n2

π2 sin
2 π

n

) = 1,

which equals the dimension of the circle. Moreover, we have lim
n→∞

n2Vn = π2

3 ,

which is a finite positive number.

Proposition 2.2.3. The points in an optimal set of n-means for the uniform
distribution P on the unit circle x2

1 + x2
2 = 1 form a concentric circle of radius

n
π sin π

n .

Proof. By Theorem 2.2.1, we see that if αn is an optimal set of n-means for a

positive integer n, then αn = {a1, a2, . . . , an}, where ak = n
π

(
sin(πn ) ·cos((2k−

1)πn ), sin(
π
n ) · sin((2k− 1)πn )

)
for k = 1, 2, . . . , n. The distance of the points ak

from the center (0, 0) is n
π sin π

n yielding the fact that the points ak form the

circle x2
1 + x2

2 = n2

π2 sin
2 π

n , which is the proposition. □
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Remark 2.2.4. By Proposition 2.2.3, we know that the points in an optimal set
of n-means for the uniform distribution P on the unit circle x2

1 + x2
2 = 1 lie on

the circle x2
1 + x2

2 = n2

π2 sin
2 π

n . Notice that the radius of the circle n
π sin π

n is an
increasing function of n and approaches to one as n → ∞, i.e., the concentric
circle formed by the points in an optimal set of n-means approaches to the
circle x2

1 + x2
2 = 1 as n → ∞ (see Figure 2).

2.3. Optimal quantization for a uniform distribution on the bound-
ary of an equilateral triangle

Let P be the uniform distribution defined on the boundary L of the equi-

lateral triangle with vertices O(0, 0), A(1, 0), and B( 12 ,
√
3
2 ). Let s represent

the distance of any point on L from the origin tracing along the boundary of
the triangle in the counterclockwise direction. Then, the points O, A, B are,
respectively, represented by s = 0, s = 1, s = 2, and the point with s = 3 coin-
cides with O. Then, the probability density function (pdf) f(s) of the uniform
distribution P is given by f(s) := f(x1, x2) =

1
3 for all (x1, x2) ∈ L, and zero

otherwise. Notice that L = L1 ∪ L2 ∪ L3, where

L1 = {(x1, x2) : x1 = t, x2 = 0 for 0 ≤ t ≤ 1},

L2 = {(x1, x2) : x1 = t, x2 = −
√
3(t− 1) for 1

2 ≤ t ≤ 1},

L3 = {(x1, x2) : x1 = t, x2 =
√
3t for 0 ≤ t ≤ 1

2}.

Again, dP (s) = P (ds) = f(x1, x2)ds =
1
3ds. On L1, we have

ds =

√
(
dx1

dt
)2 + (

dx2

dt
)2|dt| = |dt|

yielding dP = 1
3 |dt|. On L2 and L3, we have ds =

√
(dx1

dt )
2 + (dx2

dt )
2|dt| = 2|dt|

yielding dP = 2
3 |dt|.

Let us now prove the following lemma.

Lemma 2.3.1. Let X be a continuous random variable with uniform distribu-

tion taking values on L. Then, E(X) = (12 ,
√
3
6 ) and V (X) = 1

6 .

Proof. Recall that by (a, b) it is meant ai+ bj, where i and j are the two unit
vectors in the positive directions of x1- and x2-axes, respectively. Thus, we
have,

E(X) =

∫
L

(x1i+ x2j)dP

=
1

3

∫ 1

0

(t, 0) dt− 2

3

∫ 1
2

1

(t,−
√
3(t− 1)) dt− 2

3

∫ 0

1
2

(t,
√
3t) dt

= (
1

2
,

√
3

6
),
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and

V (X) = E∥X − E(X)∥2

=
1

3

(∫ 1

0

(
(t− 1

2
)2 + (0−

√
3

6
)2
)
dt− 2

∫ 1
2

1

(
(t− 1

2
)2

+ (−
√
3(t− 1)−

√
3

6
)2
)
dt− 2

∫ 0

1
2

(
(t− 1

2
)2 + (

√
3t−

√
3

6
)2
)
dt
)

=
1

6
.

Hence, the proof of the lemma is complete. □

Remark 2.3.2. For any (a, b) ∈ R2, we have

E∥X − (a, b)∥2 =

∫
L

∥(x1, x2)− (a, b)∥2dP

=
1

3

∫
L

(
(x1 − a)2 + (x2 − b)2

)
ds

=
1

3

∫
L

(
(x1 −

1

2
)2 + (x2 −

√
3

6
)2
)
ds

+
1

3

(
(
1

2
− a)2 + (

√
3

6
− b)2

)
= V (X) +

1

3
∥(a, b)− (

1

2
,

√
3

6
)∥2,

which is minimum if (a, b) = ( 12 ,
√
3
6 ), and the minimum value is V (X). Thus,

we see that the optimal set of one-mean is the set {( 12 ,
√
3
6 )}, and the corre-

sponding quantization error is the variance V := V (X) of the random variable
X.

The following lemma gives the optimal set of two-means.

Lemma 2.3.3. Let P be the uniform distribution defined on the boundary of

the equilateral triangle with vertices O(0, 0), A(1, 0), and B( 12 ,
√
3
2 ). Then, if

we divide the equilateral triangle into an isosceles trapezoid and an equilateral
triangle in the ratio α : 1 − α, where α = 1

8 (
√
17 − 1), then the conditional

expectations of the two regions give an optimal set of two-means. One of the
three such sets is given by {(0.314187, 0.395954), (0.771396, 0.131985)}, and the
quantization error for two-means is V2 = 0.0994281.

Proof. Let the points P and Q with position vectors p̃ and q̃ form an optimal
set of two-means for the uniform distribution on L. Let ℓ be the boundary of
their Voronoi regions. Let ℓ intersect OA and AB at the two points D and
E with position vectors d̃ and ẽ, respectively. Let D and E be given by the
parametric values t = α and t = β. Then, d̃ = (α, 0), and ẽ = (β,−

√
3(β− 1)).
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Let P be in the region which contains the point A, and Q be in the region
which contains the point B. Then,

p̃ = E(X : X ∈ DA ∪AE) and q̃ = E(X : X ∈ EB ∪BO ∪OD),

yielding

p̃ =
1

P (DA ∪AE)

∫
DA∪AE

xdP

=
(−α2

2 − 2(β
2

2 − 1
2 ) +

1
2

−α− 2(β − 1) + 1
,−

2(− 1
2

√
3β2 +

√
3β −

√
3
2 )

−α− 2(β − 1) + 1

)
and

q̃ =
1

P (EB ∪BO ∪OD)

∫
EB∪BO∪OD

xdP

=
( α2

2 − 2( 18 − β2

2 ) + 1
4

α− 2( 12 − β) + 1
,

√
3
4 − 2(

√
3β2

2 −
√
3β + 3

√
3

8 )

α− 2( 12 − β) + 1

)
.

Since D and E lie on ℓ, and the boundary of the Voronoi regions ℓ is the per-
pendicular bisector of the line segment joining P and Q, we have the canonical
equations as ρ(d̃, p̃) = ρ(d̃, q̃) and ρ(ẽ, p̃) = ρ(ẽ, q̃) which after simplification
give the following two equations:

2α5 + α4(12β − 11) + 4α3
(
4β2 − 10β + 3

)
+ 2α2

(
8β3 − 26β2 + 28β − 3

)
+ 2α

(
8β3 − 20β2 + 12β − 3

)
−64β5 + 240β4 − 352β3 + 252β2 − 84β + 9 = 0,

and

− 9− 5α4 + 2α5 + 12β + 108β2−288β3+240β4 − 64β5 + α3
(
−8β2 + 4β + 4

)
+ α2

(
−32β3 + 76β2 − 44β + 6

)
−2α

(
48β4 − 144β3 + 160β2 − 78β + 15

)
= 0.

Solving the above two equations in α and β, we get the following four sets of
solutions: {

α = 0, β =
3

4

}
,
{
α =

1

2
, β =

1

2

}
, {α = 1, β = 1}, and{

α =
1

8
(
√
17− 1), β =

79
8 (

√
17− 1)− 51

65(
√
17− 1)− 232

}
Thus, we have the following results:

(i) Putting {α = 0, β = 3
4}, we obtain p̃ = (58 ,

1
8
√
3
) and q̃ = (38 ,

7
8
√
3
).

Notice that in this case D coincides with the vertex O, and p̃ and q̃ are sym-
metric about the line ℓ, i.e., the boundary line ℓ of the two Voronoi regions
becomes a median of the triangle passing through the vertex O, and thus, the
corresponding distortion error, denoted by V2,(i), is given by

V2,(i) = 2

∫
OA∪AE

ρ((x1, x2), p̃)dP
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=
2

3

(∫ 1

α

ρ((t, 0), p̃)dt− 2

∫ β

1

ρ((t,−
√
3(t− 1)), p̃)dt

)
yielding V2,(i) =

5
48 = 0.104167.

(ii) Putting
{
α = 1

2 , β = 1
2

}
, we obtain p̃ = ( 34 ,

1
2
√
3
) and q̃ = ( 14 ,

1
2
√
3
).

Notice that in this case E coincides with the vertex B, and p̃ and q̃ are sym-
metric about the line ℓ, i.e., the boundary line ℓ of the two Voronoi regions
becomes a median of the triangle passing through the vertex B, and thus, the
corresponding distortion error, denoted by V2,(ii), is given by

V2,(ii) = 2

∫
DA∪AB

ρ((x1, x2), p̃)dP

=
2

3

(∫ 1

α

ρ((t, 0), p̃)dt− 2

∫ β

1

ρ((t,−
√
3(t− 1)), p̃)dt

)
yielding V2,(ii) =

5
48 = 0.104167.

(iii) Putting {α = 1, β = 1}, we see that the points D and E coincides with
A, which is not true.

(iv) Putting {α = 1
8 (
√
17− 1), β =

79
8 (

√
17−1)−51

65(
√
17−1)−232

}, we see that the points D
and E, respectively, are given by ( 18 (

√
17− 1), 0) and( 79

8 (
√
17− 1)− 51

65(
√
17− 1)− 232

,−
√
3
( 79

8 (
√
17− 1)− 51

65(
√
17− 1)− 232

− 1
))

.

Thus, in this case we have OD = BE and DA = AE = ED implying the fact
that the boundary of the Voronoi regions ℓ divides the equilateral triangle into
an isosceles trapezoid and an equilateral triangle in the ratio α : 1− α, where
α = 1

8 (
√
17− 1). The corresponding distortion error V2,(iv) is given by

V2,(iv) =
1

3

(∫ 1

α

ρ((t, 0), p̃) dt− 2

∫ β

1

ρ((t,−
√
3(t− 1)), p̃) dt

− 2

∫ 1
2

β

ρ((t,−
√
3(t− 1)), q̃) dt− 2

∫ 0

1
2

ρ((t,
√
3t), q̃) dt

+

∫ α

0

ρ((t, 0), q̃) dt
)

=
1

3
(0.0330382 + 0.0330382 + 0.0716907 + 0.0888266 + 0.0716907)

= 0.0994281.

Thus, comparing the distortion errors V2,(i), V2,(ii), and V2,(iv), we can say that
when the boundary of the Voronoi regions ℓ divides the equilateral triangle into
an isosceles trapezoid and an equilateral triangle in the ratio α : 1− α, where
α = 1

8 (
√
17− 1), then the conditional expectations of the two Voronoi regions

give an optimal set of two-means. There are three such sets; one of them is given
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by {(0.314187, 0.395954), (0.771396, 0.131985)} and the quantization error for
two-means is V2 = 0.0994281. Thus, the proof of the lemma is complete. □

The following lemma gives the optimal set of three-means.

Lemma 2.3.4. Let P be the uniform distribution defined on the boundary of

the equilateral triangle with vertices O(0, 0), A(1, 0), and B( 12 ,
√
3
2 ). Then, the

set {( 1316 ,
√
3

16 ), (
1
2 ,

3
√
3

8 ), ( 3
16 ,

√
3

16 )} forms the optimal set of three-means, and the

quantization error for three-means is V3 = 7
192 = 0.0364583.

Proof. Let the points P , Q, and R with position vectors p̃, q̃, and r̃ form
an optimal set of three-means for the uniform distribution on L. Let the
boundaries of their Voronoi regions cut the sides OA, AB, and BO at the
points D, E, and F with parametric values given by t = α, t = β, and t = γ,
respectively. Let d̃, ẽ, and f̃ be the position vectors ofD, E, and F , respectively.
Then,

d̃ = (α, 0), ẽ = (β,−
√
3(β − 1)), and f̃ = (γ,

√
3γ).

Let p̃ = E(X : X ∈ DA ∪ AE), q̃ = E(X : X ∈ EB ∪ BF ), and r̃ = E(X :
X ∈ FO ∪ OD). Then, using the definitions of conditional expectations, and
after some calculations, we have

p̃ =
(−α2

2 − 2(β
2

2 − 1
2 ) +

1
2

−α− 2(β − 1) + 1
,−

2(− 1
2

√
3β2 +

√
3β −

√
3
2 )

−α− 2(β − 1) + 1

)
,

q̃ =
(−2( 18 − β2

2 )− 2(γ
2

2 − 1
8 )

−2( 12 − β)− 2(γ − 1
2 )

,
−2(

√
3β2

2 −
√
3β + 3

√
3

8 )− 2(
√
3γ2

2 −
√
3
8 )

−2( 12 − β)− 2(γ − 1
2 )

)
, and

r̃ =
( α2

2 + γ2

α+ 2γ
,

√
3γ2

α+ 2γ

)
.

Notice that the point D lies on the boundary of the Voronoi regions of P
and R implying ρ(d̃, r̃) = ρ(d̃, p̃). Similarly, for the points E and F , we have

ρ(ẽ, p̃) = ρ(ẽ, q̃), and ρ(f̃ , q̃) = ρ(f̃ , r̃). Thus, we have three equations in α,
β, and γ. Solving the three equations, we obtain the following three sets of
solutions:

{α = 0, β = 1, γ =
1

2
}, {α =

1

2
, β =

3

4
, γ =

1

4
}, and {α = 1, β =

1

2
, γ = 0}.

Thus, we obtain the following three results:

(i) For {α = 0, β = 1, γ = 1
2}, we have p̃ = (12 , 0), q̃ = ( 34 ,

√
3
4 ), r̃ = ( 14 ,

√
3
4 )

with distortion error obtained as 1
12 = 0.0833333.

(ii) For {α = 1
2 , β = 3

4 , γ = 1
4}, we have p̃ = ( 1316 ,

√
3

16 ), q̃ = (12 ,
3
√
3

8 ), r̃ =

( 3
16 ,

√
3

16 ) with distortion error obtained as 7
192 = 0.0364583.

(iii) For {α = 1, β = 1
2 , γ = 0}, we have p̃ = ( 34 ,

√
3
4 ), q̃ = ( 14 ,

√
3
4 ), r̃ = ( 12 , 0)

with distortion error obtained as 1
12 = 0.0833333.
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Comparing the distortion errors, we deduce that the set

{(13
16

,

√
3

16
), (

1

2
,
3
√
3

8
), (

3

16
,

√
3

16
)}

forms the optimal set of three-means (see Figure 3), and the quantization error
for three-means is V3 = 7

192 = 0.0364583. Thus, the lemma is yielded. □

The following lemma gives the optimal set of four-means.

Lemma 2.3.5. Let P be the uniform distribution defined on the boundary of

the equilateral triangle with vertices O(0, 0), A(1, 0), and B( 12 ,
√
3
2 ). Then, the

set

{(0.133784, 0.140735), (0.5, 0), (0.866216, 0.140735), (0.5, 0.653763)}
forms an optimal set of four-means, and the corresponding quantization error
is V4 = 0.028269.

Proof. Let the points P , Q, R, and S with position vectors p̃, q̃, r̃, and s̃ form an
optimal set of four-means for the uniform distribution on L. Let the boundaries
of their Voronoi regions cut the side OA at two points D and E, and cut AB,
BO at the points F , G, respectively. Let the position vectors of D,E, F,G be
d̃, ẽ, f̃ , g̃ with parametric values given by t = α, β, γ, δ, respectively. Then,

d̃ = (α, 0), ẽ = (β, 0), f̃ = (γ,−
√
3(γ − 1)), and g̃ = (δ,

√
3δ).

Let p̃ = E(X : X ∈ GO∪OD), q̃ = E(X : X ∈ DE), r̃ = E(X : X ∈ EA∪AF ),
and s̃ = E(X : X ∈ FB ∪ BG). Then, using the definitions of conditional
expectations, and after some calculations, we have

p̃ =
( α2

2 + δ2

α+ 2δ
,

√
3δ2

α+ 2δ

)
, q̃ =

(α+ β

2
, 0
)
,

r̃ =
(−β2

2 − 2(γ
2

2 − 1
2 ) +

1
2

−β − 2(γ − 1) + 1
,−

2(− 1
2

√
3γ2 +

√
3γ −

√
3
2 )

−β − 2(γ − 1) + 1

)
, and

s̃ =
(−2( 18 − γ2

2 )− 2( δ
2

2 − 1
8 )

−2( 12 − γ)− 2(δ − 1
2 )

,
−2(

√
3γ2

2 −
√
3γ + 3

√
3

8 )− 2(
√
3δ2

2 −
√
3
8 )

−2( 12 − γ)− 2(δ − 1
2 )

)
.

In this case, we obtain the following four canonical equations in α, β, γ, and δ:

ρ(d̃, p̃) = ρ(d̃, q̃), ρ(ẽ, q̃) = ρ(ẽ, r̃), ρ(f̃ , r̃) = ρ(f̃ , s̃), and ρ(g̃, s̃) = ρ(g̃, p̃).

Solving the above four equations, we obtain

α = 0.28985, β = 0.71015, γ = 0.7451, δ = 0.2549
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P

Q QP

R

QP

S

R

Figure 3. Optimal configuration of n means for 2 ≤ n ≤ 4.

yielding p̃ = (0.133784, 0.140735), q̃ = (0.5, 0), r̃ = (0.866216, 0.140735), and
s̃ = (0.5, 0.653763) (see Figure 3). Notice that the above four points are sym-
metric about the median passing through the vertex B. Thus, the correspond-
ing quantization error is given by

V4 =
2

3

(∫ β

1
2

ρ((t, 0), q̃)dt+

∫ 1

β

ρ((t, 0), r̃)dt− 2

∫ γ

1

ρ((t,−
√
3(t− 1)), r̃)dt

− 2

∫ 1
2

γ

ρ((t,−
√
3(t− 1)), s̃)dt

)
= 0.028269.

Thus, the lemma is yielded. □

Remark 2.3.6. Due to the symmetry of the equilateral triangle with respect to
a rotation of 2π

3 , by Lemma 2.3.5, we conclude that there are three optimal
sets of four-means (see Figure 3).

Let us now state the following two lemmas which give the optimal sets of
five- and six-means. The proofs are similar to the previous lemmas.

Lemma 2.3.7. Let P be the uniform distribution defined on the boundary of

the equilateral triangle with vertices O(0, 0), A(1, 0), and B( 12 ,
√
3
2 ). Then, the

set

{(0.130625, 0.138564), (0.485912, 0), (0.883966, 0.0669921),
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P
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Figure 4. Optimal configuration of n means for n = 5, 6.

(0.742956, 0.445213), (0.445312, 0.683619)}
forms an optimal set of five-means, and the corresponding quantization error
is V5 = 0.020525 (see Figure 4).

Lemma 2.3.8. Let P be the uniform distribution defined on the boundary of

the equilateral triangle with vertices O(0, 0), A(1, 0), and B( 12 ,
√
3
2 ). Then, the

set

{(0.112854, 0.0651563), (0.5, 0), (0.887146, 0.0651563),

(0.75, 0.433013), (0.5, 0.735713), (0.25, 0.433013)}
forms an optimal set of six-means, and the corresponding quantization error is
V6 = 0.0132077 (see Figure 4).

Remark 2.3.9. By Lemma 2.3.4, Lemma 2.3.5, Lemma 2.3.7, and Lemma 2.3.8,
we see that if αn is an optimal set of n-means for 3 ≤ n ≤ 6, then αn contains
three elements in the interior of the triangle each close to one of the vertices,
and the remaining elements are on the sides of the triangle. In fact, for n ≥ 6,
if αn is an optimal set of n-means, then it can be shown that αn contains three
elements in the interior of the triangle each close to one of the vertices, and the
remaining elements are on the sides of the triangle. If αn contains n1, n2, and
n3 elements from the three sides of the triangle, where n = n1 + n2 + n3 + 3,
it can be shown that |ni − nj | ≤ 1 for 1 ≤ i ̸= j ≤ 3. If it is not true, then the
quantization error can be reduced by redistributing the points until n1, n2, and
n3 satisfy |ni − nj | ≤ 1 for 1 ≤ i ̸= j ≤ 3, and this contradicts the optimality
of the set αn. Due to technicality, we are not showing the details of the proof
in the paper.

The following theorem determines the optimal sets of n-means and the nth
quantization errors when n = 3k + 3 for some positive integer k. It also helps
us to determine the quantization dimension and the quantization coefficient for
the uniform distribution defined on the boundary of the equilateral triangle.
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Theorem 2.3.10. Let n ∈ N be such that n ≥ 6, and n = 3k + 3 for some
positive integer k. Then, the optimal set of n-means for P is given by

αn =
{
(
3r

8
,

√
3r

8
), (1− 3r

8
,

√
3r

8
), (

1

2
,−1

4

√
3(r − 2))

}
∪ γ ∪ T1(γ) ∪ T2(γ),

where γ := {r + 2j−1
2k (1 − 2r) : j = 1, 2, . . . , k}, and r = 8−2

√
7k

16−7k2 , and T1, T2

are two affine transformations on R2 such that T1(0, 0) = ( 12 ,
√
3
2 ), T1(1, 0) =

(1, 0), T2(0, 0) = (0, 0), and T2(1, 0) = ( 12 ,
√
3
2 ). The quantization error for

n-means is given by

Vn =
7
(
7k2 − 8

√
7k + 16

)
12 (16− 7k2)

2 .

Proof. Let a, b, c be the three points that αn contains from the interior of the
angles ∠O, ∠A, and ∠B, respectively. Again, recall that P is uniform over
the boundary of the triangle, and as mentioned in Remark 2.3.9, αn contains
k elements from each side of the triangle yielding the fact that the Voronoi
regions of a, b, c will form equilateral triangles P almost surely. Let the lengths
of the sides of the equilateral triangles formed by the Voronoi regions of a, b, c
equal r. Then,

a =

∫ r

0
(t, 0) dt− 2

∫ 0
r
2
(t,

√
3t) dt∫ r

0
1 dt− 2

∫ 0
r
2
1 dt

= (
3r

8
,

√
3r

8
),

b =

∫ 1

1−r
(t, 0) dt− 2

∫ 1− r
2

1
(t,−

√
3(t− 1)) dt∫ 1

1−r
1 dt− 2

∫ 1− r
2

1
1 dt

= (1− 3r

8
,

√
3r

8
), and

c =
−2

∫ 1
2
1
2 (1+r)

(t,−
√
3(t− 1)) dt− 2

∫ 1
2 (1−r)
1
2

(t,
√
3t) dt

−2
∫ 1

2
1
2 (1+r)

1 dt− 2
∫ 1

2 (1−r)
1
2

1 dt
= (

1

2
,−1

4

√
3(r − 2)).

Let γ be the set of all the k points that αn contains from the side OA. Then,
the Voronoi regions of the points in γ covers the closed interval [r, 1−r] yielding

γ =
{(

r +
2j − 1

2k
(1− 2r), 0

)
: j = 1, 2, . . . , k

}
.

Since T1 and T2 are affine transformations with T1(OA) = AB, and T2(OA) =
OB, we have the points that αn contains from AB and OB are, respectively,
T1(γ) and T2(γ) yielding

αn =
{
(
3r

8
,

√
3r

8
), (1− 3r

8
,

√
3r

8
), (

1

2
,−1

4

√
3(r − 2))

}
∪ γ ∪ T1(γ) ∪ T2(γ).

Using the symmetry, the quantization error for n-means is obtained as

Vn = 3(quantization error due to the points a and the k points in γ)

= 3
(
− 2

3

∫ 0

r
2

ρ((t,
√
3t), a)dt+

1

3

∫ r

0

ρ((t, 0), a)dt
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+
1

3
k

∫ r+ 1−2r
k

r

ρ
(
(t, 0), (r +

1

2k
(1− 2r), 0)

)
dt
)

=
1

24

(
7r3 − 2(2r − 1)3

k2

)
.

Notice that for a given k, the quantization error Vn is a function of r. Solving
∂Vn

∂r = 0, we have r = 8−2
√
7k

16−7k2 . Putting r = 8−2
√
7k

16−7k2 , we have

Vn =
7
(
7k2 − 8

√
7k + 16

)
12 (16− 7k2)

2 .

Thus, the proof the theorem is complete. □

Remark 2.3.11. When n = 6, i.e., when k = 1, then Theorem 2.3.10 reduces
to Lemma 2.3.8. Using a similar technique as in the proof of Theorem 2.3.10,
we can also determine the optimal sets of n-means and the nth quantization
errors when n = 3k + 3 + 1, or n = 3k + 3 + 2 for some positive integer k.

Proposition 2.3.12. Quantization dimension D(P ) of the uniform distribu-
tion P defined on the boundary of the equilateral triangle equals the dimension
of the boundary of the triangle. Moreover, the quantization coefficient exists as
a finite positive number which equals 3

4 .

Proof. For n ∈ N, n ≥ 6, let ℓ(n) be the unique positive real number such that
3ℓ(n) + 3 ≤ n < 3(ℓ(n) + 1) + 3. Then, V3(ℓ(n)+1)+3 < Vn ≤ V3ℓ(n)+3 implying

2 log(3ℓ(n) + 3)

− log V3(ℓ(n)+1)+3
<

2 log n

− log Vn
<

2 log(3(ℓ(n) + 1) + 3)

− log V3ℓ(n)+3
.(10)

Notice that

lim
n→∞

2 log(3ℓ(n) + 3)

− log V3(ℓ(n)+1)+3
= lim

ℓ(n)→∞

2 log(3ℓ(n) + 3)

− log

(
7(7(ℓ(n)+1)2−8

√
7(ℓ(n)+1)+16)

12(16−7(ℓ(n)+1)2)2

) = 1,

and

lim
n→∞

2 log(3(ℓ(n) + 1) + 3)

− log V3ℓ(n)+3
= lim

ℓ(n)→∞

2 log(3(ℓ(n) + 1) + 3)

− log

(
7(7ℓ(n)2−8

√
7ℓ(n)+16)

12(16−7ℓ(n)2)2

) = 1

and hence, by (10), lim
n→∞

2 logn
− log Vn

= 1 which is the dimension of the underlying

space. Again,

(11) (3ℓ(n) + 3)2V3(ℓ(n)+1)+3 < n2Vn < (3(ℓ(n) + 1) + 3)2V3ℓ(n)+3.

We have

lim
n→∞

(3ℓ(n) + 3)2V3(ℓ(n)+1)+3

= lim
ℓ(n)→∞

(3ℓ(n) + 3)2
7
(
7(ℓ(n) + 1)2 − 8

√
7(ℓ(n) + 1) + 16

)
12 (16− 7(ℓ(n) + 1)2)

2 =
3

4
,
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and

lim
n→∞

(3(ℓ(n) + 1) + 3)2V3ℓ(n)+3

= lim
ℓ(n)→∞

(3(ℓ(n) + 1) + 3)2
7
(
7ℓ(n)2 − 8

√
7ℓ(n) + 16

)
12 (16− 7ℓ(n)2)

2 =
3

4
,

and hence, by (11), we have lim
n→∞

n2Vn = 3
4 , i.e., the quantization coefficient

exists as a finite positive number which equals 3
4 . Thus, the proof of the

proposition is complete. □

Remark 2.3.13. By Remark 2.3.9, we see that an optimal set αn of n-means
for n ≥ 3 always contains three elements in the interior of the triangle each
close to one of the vertices, and the remaining elements are on the sides of the
triangle. It can be shown that as n approaches to infinity each of the three
elements which are in the interior of the triangle approaches to their closest
vertices.

Let us now end the paper with the following remark.

Remark 2.4. We know that an affine transformation T on R2 is given by

T

[
x1

x2

]
= A

[
x1

x2

]
+

[
e
f

]
,

where A :=
[
a b
c d

]
is an invertible matrix, and e, f ∈ R. Once the optimal sets

of n-means are known for a line segment, circle, or an equilateral triangle, by
giving an affine transformation, one can easily obtain them for any line segment,
circle, or an equilateral triangle. For example, by Theorem 2.1.1, we see that
the optimal set of n-means with respect to the uniform distribution on the line
segment [0, 1] is given by αn := { 2i−1

2n : 1 ≤ i ≤ n}, and the corresponding

quantization error is Vn := Vn(P ) = 1
12n2 . The optimal set of n-means for the

uniform distribution on the line segment joining (0, 0) and (1,
√
3) is given by

αn := {( 2i−1
2n ,

√
3(2i−1)
2n ) : 1 ≤ i ≤ n}, and the corresponding quantization error

is Vn := Vn(P ) = 1
3n2 .
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