• Title/Summary/Keyword: Distributed source coding

Search Result 23, Processing Time 0.031 seconds

Improvement of Feedback Delay for Practical Distributed Source Coding (실제적인 분산 비디오 부호화를 위한 분산 소스 부호화 시스템의 피드백 지연 문제 개선 방안)

  • Shin, Seung-Shik;Shin, Sang-Yun;Jang, Min;Lim, Dae-Woon;Kim, Sang-Hyo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.122-128
    • /
    • 2012
  • Because of the system delay caused by the number of feedback retransmission in Distributed Video Coding (DVC) scheme, it is difficult to realize practical DVC in many cases. In this paper low feedback retransmission Distributed Source Coding (DSC) scheme is proposed for practical DVC scheme based on Low-Density Parity-Check (LDPC) codes because DVC system is an specific application of DSC system. This DSC scheme is achieved by using different LDPC codes optimized in each different compression rate and using source revealing scheme. Optimized LDPC codes provide us much better decoding performance which causes the 57% reduced number of iteration. Consequently, the number of feedback retransmission is decreased by 50%.

A Distributed Privacy-Utility Tradeoff Method Using Distributed Lossy Source Coding with Side Information

  • Gu, Yonghao;Wang, Yongfei;Yang, Zhen;Gao, Yimu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2778-2791
    • /
    • 2017
  • In the age of big data, distributed data providers need to ensure the privacy, while data analysts need to mine the value of data. Therefore, how to find the privacy-utility tradeoff has become a research hotspot. Besides, the adversary may have the background knowledge of the data source. Therefore, it is significant to solve the privacy-utility tradeoff problem in the distributed environment with side information. This paper proposes a distributed privacy-utility tradeoff method using distributed lossy source coding with side information, and quantitatively gives the privacy-utility tradeoff region and Rate-Distortion-Leakage region. Four results are shown in the simulation analysis. The first result is that both the source rate and the privacy leakage decrease with the increase of source distortion. The second result is that the finer relevance between the public data and private data of source, the finer perturbation of source needed to get the same privacy protection. The third result is that the greater the variance of the data source, the slighter distortion is chosen to ensure more data utility. The fourth result is that under the same privacy restriction, the slighter the variance of the side information, the less distortion of data source is chosen to ensure more data utility. Finally, the provided method is compared with current ones from five aspects to show the advantage of our method.

Complexity of Distributed Source Coding using LDPCA Codes (LDPCA 부호를 이용한 실용적 분산 소스 부호화의 복호복잡도)

  • Jang, Min;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.329-336
    • /
    • 2010
  • Distributed source coding (DSC) system moves computational burden from encoder to decoder, so it takes higher decoding complexity. This paper explores the problem of reducing the decoding complexity of practical Slepian-Wolf coding using low-density parity check accumulate (LDPCA) codes. It is shown that the convergence of mean magnitude (CMM) stopping criteria for LDPC codes help reduce the 85% of decoding complexity under the 2% of compression rate loss, and marginal initial rate request reduces complexity below complexity minimum bound. Moreover, inter-rate stopping criterion, modified for rate-adaptable characteristic, is proposed for LDPCA codes, and it makes decoder perform less iterative decoding than normal stopping criterion does when channel characteristic is unknown.

Outage Analysis and Power Allocation for Distributed Space-Time Coding-Based Cooperative Systems over Rayleigh Fading Channels

  • Lee, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2017
  • In this research, we study the outage probability for distributed space-time coding-based cooperative (DSTC) systems with amplify-and-forward relaying over Rayleigh fading channels with a high temporal correlation where the direct link between the source and the destination is available. In particular, we derive the upper and lower bounds of the outage probability as well as their corresponding asymptotic expressions. In addition, using only the average channel powers for the source-to-relay and relay-to-destination links, we propose an efficient power allocation scheme between the source and the relay to minimize the asymptotic upper bound of the outage probability. Through a numerical investigation, we verify the analytical expressions as well as the effectiveness of the proposed efficient power allocation. The numerical results show that the lower and upper bounds tightly correspond to the exact outage probability, and the proposed efficient power allocation scheme provides an outage probability similar to that of the optimal power allocation scheme that minimizes the exact outage probability.

On the Construction of Polar Codes for Rate Adaptive Distributed Source Coding (부호율 적응적 분산 소스 부호화를 위한 극부호의 설계)

  • Kim, Jaeyoel;Kim, Jong-Hwan;Trang, Vu Thi Thuy;Kim, Sang-Hyo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.3-10
    • /
    • 2015
  • Application of polar codes to rate-adaptive asymmetric Slepian-Wolf coding is considered. We propose a method of constructing polar codes which supports rate adaptivity. The proposed polar distributed source coding with successive cancellation list decoding performs closer to the Slepian-Wolf bound than the low density parity check accumulate (LDPCA) codes in the same framework.

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

Improved Side Information Generation using Field Coding for Wyner-Ziv Codec (Wyner-Ziv 부호화기를 위한 필드 부호화 기반 개선된 보조정보 생성)

  • Han, Chan-Hee;Jeon, Yeong-Il;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.10-17
    • /
    • 2009
  • Wyner-Ziv video coding is a new video compression paradigm based on distributed source coding theory of Slepian-Wolf and Wyner-Ziv. Wyner-Ziv coding enables light-encoder/heavy-decoder structure by shifting complex modules including motion estimation/compensation task to the decoder. Instead of performing the complicated motion estimation process in the encoder, the Wyner-Ziv decoder performs the motion estimation for the generation of side information in order to make the predicted signal of the Wyner-Ziv frame. The efficiency of side information generation deeply affects the overall coding performance, since the bit-rates of the Wyner-Ziv coding is directly dependent on side information. In this paper, an improved side information generation method using field coding is proposed. In the proposed method, top fields are coded with the existing SI generation method and bottom fields are coded with new SI generation method using the information of the top fields. Simulation results show that the proposed method improves the quality of the side information and rate-distortion performance compared to the conventional method.

Incremental-runlength distribution for Markov graphic data source (Markov 그라픽 데이타에 대한 incremental-runlength의 확률분포)

  • 김재균
    • 전기의세계
    • /
    • v.29 no.6
    • /
    • pp.389-392
    • /
    • 1980
  • For Markov graphic source, it is well known that the conditional runlength coding for the runs of correct prediction is optimum for data compression. However, because of the simplicity in counting and the stronger concentration in distrubution, the incremental run is possibly a better parameter for coding than the run itself for some cases. It is shown that the incremental-runlength is also geometrically distributed as the runlength itself. The distribution is explicitly described with the basic parameters defined for a Markov model.

  • PDF

Homomorphic Subspace MAC Scheme for Secure Network Coding

  • Liu, Guangjun;Wang, Xiao
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.173-176
    • /
    • 2013
  • Existing symmetric cryptography-based solutions against pollution attacks for network coding systems suffer various drawbacks, such as highly complicated key distribution and vulnerable security against collusion. This letter presents a novel homomorphic subspace message authentication code (MAC) scheme that can thwart pollution attacks in an efficient way. The basic idea is to exploit the combination of the symmetric cryptography and linear subspace properties of network coding. The proposed scheme can tolerate the compromise of up to r-1 intermediate nodes when r source keys are used. Compared to previous MAC solutions, less secret keys are needed for the source and only one secret key is distributed to each intermediate node.

Weighted Distance-Based Quantization for Distributed Estimation

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.215-220
    • /
    • 2014
  • We consider quantization optimized for distributed estimation, where a set of sensors at different sites collect measurements on the parameter of interest, quantize them, and transmit the quantized data to a fusion node, which then estimates the parameter. Here, we propose an iterative quantizer design algorithm with a weighted distance rule that allows us to reduce a system-wide metric such as the estimation error by constructing quantization partitions with their optimal weights. We show that the search for the weights, the most expensive computational step in the algorithm, can be conducted in a sequential manner without deviating from convergence, leading to a significant reduction in design complexity. Our experments demonstrate that the proposed algorithm achieves improved performance over traditional quantizer designs. The benefit of the proposed technique is further illustrated by the experiments providing similar estimation performance with much lower complexity as compared to the recently published novel algorithms.