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Abstract

For Markov graphic source, it is well known that the conditional runlength coding

for the runs of correct prediction is optimum for data compression. However, because of

the simplicity in counting and the stronger concentration in distribution, the incremental

run is possibly a better parameter for coding than the run itself for some cases.

It is shown that the incremental-runlength is also geometrically distributed as the

runlength itself. The distribution is explicitly described with the basic parameters

defined for a Markov model.

1. Introduction

The graphic data is a binary data generated
by scanning the graphic images such as printed
documents and drawings. The most realistic
statistical model for the graphic data is the two-
dimensional Markov model [1]. We assume that
all the conditional probabilities of present data
value given N.surrounding cata are known for
all possible patterns of data, ie., for 2N states.
Based on these conditional protakilities, we can
predict the present data values, correctly most
of the time. Although several prediction schemes
are conceivable [2,3) given the Markov assump-
tion, it is mest natural to teke the maximum-
likelthood prediction. For the purpose of trans-
mission of the data source information, it will be
sufficient to send only the information that
where the prediction is not correct, l.e., the posi-
tion of prediction error. In fact, it is well known
that the couditional runlength coding for the

runs of correct predictions is optimum for Markov
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source [1].

We consider a fourth-order Markov model
with sixteen states as shown in Fig. 1 and Table
1. The predicted value £, is the maximum-
likehood value for a measured statistics.

The conditional probability of the present
value z, given the previous values is given by

Plaolxy, za) =p (@0l 1,22, 55, 20) )
where {z;}, i1,
elements used for prediction of .

are the previous pitcure

While we are scanning or receiving the current
scan line, we may generate a2 dual sequence of
states and predictions, {sie;}, where ¢;=1 or 0
depending on whether a prediction error occurred
or not. From the dual sequence, we may count
the separate runs of correct predictions for each
states as shown in Fig. 2b {11

Let {7} be an arbitraiy sequerce of runs and
let {;,i} Le the sequence of runs of state S, Let
i be the probability of predicticn error and g;=
1—p; for each state S, b;'z(), 1, reeees ,2%—1, Then
from the Markow property, we get the following
resuits [1, 2L

(i) All the conditional runs are independent.

(389 )
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From this, we see easily that the interleaved
runs {r;} can be treated separately for each

state.
Hg 1 X3 | Xp j’,previous line
Xy | %o { current line
1
Xo = present picture element
Xyr' s Xq = previcus picture elements used for

prediction

Fig. 1. A 4th order Markov model

Table 1. States and Predicted values

state x Z2 s Za o
So w w w w w
Sy b w w w b
S w b w W w
S, b b w w b
Sy w w b w w
Ss b w b w b
Se w b b w b
S, b b b w b
Ss w w w b w
Ss b w w b w
Sio w b w b w
Su b b w b b
Sz w w b b w
Sia b w b b b
Sie w b b b w
Sis b b b b b

w=white element
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Fig. 2. Conditional runlength countings
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(i1) For each state, the runs are geometrically
distributed, and the average runlength is the
inverse of probability of prediction error.

Hrui)=p; g7, izl 3
E(R|S)=p;"" for all ¢ '€))

In fact, the equation (4) holds for any distru-
bution of empirical probabilities.

As we may see from Fig. 2b, it is rather
complicated to count the statewise runs in
practice. Instead, the incremental runs of Fig.
2C are much simpler to keep trace. The refer-
ence point of an incremental runs for a state is
the end of the previous run of any state. We
notice that the runlengths of the incremental
runs are always shorter than or equal to those of
the runs themselves. Therefore, the incremental
runlength is possibly a better parameter for
coding and transmission of the graphic data
information[4].

We well find the incremental-runlength proba-
bilities from the given Markov assumption and
the probabilities of runs themselves in the follow-

ing section.
2. Probability of Incremental Runs

By the definition of the incremental runs, the
runs of state §; are transformed to the increm-
ental runs of shorter or equal runlengths of the
same state S;. The change of runlength occurs
when some other states in between S,’s are in
an error. It does not depend on what other state
is in error. Hence, we may account the effect
of other states by a complement state S;¢ for
state S; with the averaged probability of predic-

tion error p,°.

P.~°=Z(—§f’#)zﬁ (5)

i
where p; is the probability of state S; and p;
is the probability of prediction error in state S;.
From the independency of conditional runs as
shown in (2), we may write the probability of
an arbitrary interleaved run including a S; run
of runlength j, as following.
Plri i)l I 2(rui)=p(riio) p(rés) (6
where #¢,; denotes the run of j complement

states, regardless of error, interleaved with(j,+1)

( 390 )
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.S, states. Within the complement state run r%,;’
.only the last error state as shown in Table 2
decides the runlength of the incremental run by
the definition. Depending on the position of the
last complement state in error, a run of runlen-
‘gth jo is changed to an incremental run of
runlength 1,2, jo—1, or remained to be Jjo
itself. For example, Table 2 explains how a §;
run of runlength j,=3 is changed to the incre-
mental runs of different runlengths.
We notice that the basic property of Markov
model is still valid for the complement states.
. Let us define a probability p;’
p:5ps(Si€)=probability of prediction error
for S,° in between two S;’s )
where S;° denotes the complement states of
-arbitrary length in between two adjacent S/s.
This probability will be discussed further later
on. For simplicity, we may assume that p; is
independent of the positions of the two Ss
Then, the probability of a run of state S; can be

represented as following:

Pl =Pl 35 P(r0)
=plrese) Uit qipitg®ibit
et gifoTi P+ gt} (8)
where
qi=1—p;
and {r°;,,) are the complement state runs
: sorted by the position of the last state in error
as shown in Table 2.
The terms inside the parenthesis are for the
incremental runs of length 1,2, jo—1, and

.the last term g’o is for the incremental runle-

Table 2

ncremenial
possible run pctierns runs

@ O O @
. . . A i
s s A A v
i.2
« o A A

NOTE: @,A? Stotes with pregdictions ereor

e : Dont cgre whether s s m erior
or ot

ngth jo itself.
Similarly, for the run of runlength (jo+1),
2(ri,ior)=pri sor) {(Pit-qi it
”'+Q_-'_’.°—2P_f+q_-'j"”P_{)'*”ﬂ"‘“) 9
and so on.

From (8), (9), we notice that the probability
of the incremental run of runlengthj is constri-
buted by all the probabilities p(r;,), 1>5. Comb-
ining all these terms, we obtain the probability
of incremental runlength j.

priy=p(ri) q/ '+ plriin)g? 1P
+Priive) @ T b= plr)gd Tt
+ 21 gl (135 Plri)) 10

Using the property of geometrical distribution
plry), this is simplified to another geometrical
distribution as following.

P(;'):P-” gt (1D
where

b =1—gq,

@' =0 4i<q; 12)

g:=1~p;

We notice here that as the runlength increases,
the incremental-runlength distribution is decrea-
sing more rapidly than the runlength distribution
of (3). Hence the distribution is more concentr-
ated to result in a smaller entropy.

Now we return to p;=pg(S°) of (7). Before
considering p; itself, we discuss first the probab-
ility to have a certain number of S,'s in
between two adjacent S;/s. We notice that the
N+ order Markov source {z.}, the state sequence
{S.] becomes a first order Markov. Hence, the
conditional probability of a state sequence given
the initial state of state S; is

P(Sn’SnH""|S.‘)=P<Sn|Si)P(Snﬂ]Sn)'” (13)
Given a state sequence of m S;%s,i.e., S, in
between two Sy’s, the pro-bability of S,° i;l any

error is ™
peiS:Cim)=1~q;, m>0 (14)
where
{!x'C: 1—-p°

and 2,¢ 1s defined in (5).
Comlbining (13) and (14), we obtain ps(S;°).
P SO=33(S1C, S8 pa(S:C1m)

( 591 )
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(1=g: ) (15)
Expanding further, we get the following result.
(G0 P(S:€1S:)
R ErRs T U
— 2(S°1S)) 16)

1 (-L5)otsi1 )

where 2(S:°|S;} and »(S5;1S:°) can be obtained
from the given p/s and the patterns of states.

3. Conclusion

We have shown that for the Markov graphic
data, the incremental-runlength is also geometr-
ically distributed as the runs themselves. The
distribution 1is explicitly represented by the
parameters defined for the Markov model. As
expected, it is less spreaded out than the runle-
ngth distribution.
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