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Abstract 
 

In the age of big data, distributed data providers need to ensure the privacy, while data analysts 
need to mine the value of data. Therefore, how to find the privacy-utility tradeoff has become 
a research hotspot. Besides, the adversary may have the background knowledge of the data 
source. Therefore, it is significant to solve the privacy-utility tradeoff problem in the 
distributed environment with side information. This paper proposes a distributed 
privacy-utility tradeoff method using distributed lossy source coding with side information, 
and quantitatively gives the privacy-utility tradeoff region and Rate-Distortion-Leakage 
region. Four results are shown in the simulation analysis. The first result is that both the source 
rate and the privacy leakage decrease with the increase of source distortion. The second result 
is that the finer relevance between the public data and private data of source, the finer 
perturbation of source needed to get the same privacy protection. The third result is that the 
greater the variance of the data source, the slighter distortion is chosen to ensure more data 
utility. The fourth result is that under the same privacy restriction, the slighter the variance of 
the side information, the less distortion of data source is chosen to ensure more data utility. 
Finally, the provided method is compared with current ones from five aspects to show the 
advantage of our method. 
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1. Introduction 

In the era of Big Data, with the popularity of sensing devices and extensive use of data query 
and analysis services, the collection and mining of user’s data has become a fast growing and 
common practice by a large number of institutions. We consider a user has two kinds of 
correlated data: sensitive data (or private data) that he/she would like to keep private and 
non-sensitive data (or public data) which he/she is willing to release to the third party for data 
analysis and query services. Data query and data analysis mean the utility of data, while 
avoiding the disclosure of sensitive attributes could protect user’s privacy [1].  

Unfortunately, Most of the work is concerned with privacy protection, ignoring usability. 
The question is how to find the balance between data utility and privacy to provide the data 
utility in the same time to preserve the data privacy [2]. More generally, it is needed to achieve 
the utility-privacy tradeoff region including all optimal tradeoff points. Besides, a data 
demander often requires the aggregate data from all the distributed users to conduct data 
analysis and mining [3]. Another challenge is that side information (referred to as auxiliary 
information in the database literature) from other databases (in general from sources external 
to the database of interest) in conjunction with one or more queries can also result in privacy 
breaches. Therefore, it is significant to solve the utility-privacy tradeoff problem and find the 
tradeoff region in the distributed environment with side information, which is the goal of this 
paper. To address the above problems, Ali [4] characterizes the privacy-accuracy tradeoff in 
terms of an optimization problem. The paper gives a lower bound on the probability of error in 
inferring the private data from the released data. Andreas [5] provides a utility-privacy 
tradeoff optimization method to find a provably near-optimal result. This paper evaluates the 
method using data got from the search activity log of many paticipants and assess their 
preferences about privacy and utility by a large-scale survey activity, aiming at geting users' 
willingness to trade data sharing privacy in returns for the efficiency of search result. Ping 
Xiong [6] defines two metrics, Utility Loss and Privacy Gain to evaluate the quality of 
anonymized results and to find the optimal anonymization solution to resist probabilistic 
inference attacks. Grigorios [7] provides a distance-based quality criterion that handles both 
QIDs(quasi-identifiers) and SAs(sensitive attributes) for k-anonymization data. Besides, they 
design an efficient heuristic algorithm for anonymization data with utility privacy tradeoff, 
which optimizes the weighted sum of the amount of generalization of QIDs and the amount of 
protection of SAs. Li [8] provides a privacy-utility tradeoff method for data publishing using 
the risk-return tradeoff in financial investment, whose concepts are borrowed from the Modern 
Portfolio Theory. Rashid [9] develops an analytical cost model to find the optimal tradeoff 
between privacy and data utility in terms of monetary value. Based on defining the utility )A(U  
and privacy cost )A(C , and releasing any given set of attributes A without privacy disclosure, 
the goal of the paper [10] is to find a set A, that maximizes  )A(U  while minimizing )A(C . In 

order to solve this tradeoff, Andreas [10] defines the objective function )A(C)A(U)A(F λλ −= , 
in whichλ is a privacy-to-utility conversion factor, so that the tradeoff goal is transformed to 

solve the optimization problem of 
)A(FmaxargA

A
λλ =∗

. Different solutions 
∗
λA  can be found 

by varying λ that smaller λ  leads to higher utility and higher cost, while larger values of λ  

leads to lower utility and privacy cost. Because solving the objective function )A(Fλ  is an 
NP-hard problem, which means it is very hard to find an optimal solution and also it cannot 

http://www.paperfree.cn/report/part/2016081713/5191853490232448/htmls/sentence_detail/0.htm
http://www.paperfree.cn/report/part/2016081713/5191853490232448/htmls/sentence_detail/0.htm
http://www.paperfree.cn/report/part/2016081713/5191853490232448/htmls/sentence_detail/0.htm
http://www.paperfree.cn/report/part/2016081713/5191853490232448/htmls/sentence_detail/0.htm
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give the utility and privacy cost region quantitatively. Grigorios [11] uses the R-U 
confidentiality map to assess the balance between disclosure risk and data utility. In addition, 
the effectiveness of three transaction algorithms (Aprior [12], COAT [13] and PCTA [14]) 
with privacy constraint is compared using R-U confidentiality maps, which is produced by 
applying the same method using different parameters. Aprior anonymization algorithm is 
designed to enforce km-anonymity using the full-subtree, global generalization model. 
COAT(Constrained-based Anonymization of Transactions) algorithm employs global 
generalization and suppression. PCTA(Privacy-constrained Clustering-based Transaction 
Anonymization) is a heuristic algorithm, which iteratively selects the privacy constraint that 
requires a small amount of generalization in order to be satisfied. Loukides [15] proposes the 
R-U map which constructing and demonstrating how these concepts can be used in assessing 
the disclosure risk and a tradeoff method offered by different anonymization solutions. In 
additions, several utility indexes are used, such as Normalized Certainty Penalty(NCP) [16], 
Utility Loss(UL), and Average Relative Error(ARE) [17]. NCP is expressed as the weighted 
average of the information loss of all generalized items, which are penalized based on the 
number of leaf-level descendants they have in the generalization hierarchy. UL quantifies 
information loss based on the size, weight and support of generalized items. ARE is a criterion 
that captures data utility, based on the accuracy of performing query answering on 
anonymized data. Salamatian [18] creates a practical framework allowing the design of 
privacy-preserving mechanisms that also maintain a certain level of data utility. Under the 
framework, data is distorted before it is published, based on a probabilistic privacy mapping, 
which is obtained by solving a convex optimization problem. The problem of privacy-utility 
tradeoff is how to minimize information leakage under a distortion constraint. The work in 
[19] also investigates the tradeoff between privacy and accuracy for the problem of differential 
privacy. Differential privacy requires that the answer to any query be “probabilistically 
indistinguishable” with or without a particular row in the database. Differential privacy is 
strong, which is not needed sometimes. In additions, differential privacy works under the 
assumptions that individuals are independent of each other. If the independence assumption is 
violated, differential privacy does not adequately limit inference about individual participation 
in the dataset. Ali [20] uses the results on maximal correlation and hypercontractivity of 
Markov processes, and provides utility-aware privacy mechanisms against inference attacks 
using partial statistical knowledge of the raw data prior distribution. Besides, Ali provides an 
upper-bound on the information leakage. Chakraborty [21] establishes the objective function 
with constraints, shows the quantitative relationship between risk and utility, and finds the 
optimal solution of the objective function by adjusting the parameters of the objective function. 
Reza [22] describes the problem of maximizing the privacy-utility tradeoff into a non- 
zero-sum Stackelberg game, then tries to find the optimal solution using linear programming 
and quadratic programming. Sankar [23] provides a theoretical analysis model to show 
relationship of source coding rate and privacy leakage versus distortion in the centralized 
environment. Nevertheless, this paper does not give the quantitative functions and detailed 
derivation of the relationship between the source rate R, privacy (equivocation) E and utility 
(distortion) D. Furthermore, the proposed method cannot be used directly in the distributed 
environment.  

From the above analysis, existing solutions have the following disadvantages. Firstly, 
there are no formal metrics for utility and privacy and no formal privacy-utility tradeoff model 
in some works [7,9,11,12,15]. Secondly, some methods do not give the quantitative 
relationship between privacy and utility in the real sense [5,15,18,19,21]. Then, most of the 
existing solutions do not achieve the utility-privacy tradeoff region including all optimal 
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points [4-22], or the solution does not provide the quantitative tradeoff region [23]. Finally, no 
methods solve the privacy-utility tradeoff problem in the distributed environment with side 
information [4-23]. Motivated by the above analysis and disadvantages, our goal in the paper 
is to provide a distributed privacy-utility tradeoff method and find the tradeoff region using 
distributed lossy source coding theory with side information. In this paper we consider two 
application scenarios. The first is that the adversary has the background knowledge (or side 
information) and then combined with the released data to infer the privacy data. The second is 
that multiple data source stored separately need to be merged and analyzed with privacy 
constraints (means “distributed environment”). Our contributions are fourfold: 
 We extend the model [23] to propose a distributed method using distributed lossy source 

coding theory with side information, which gives the quantitative relationship of each 
data source rate and privacy leakage versus each data source distortion and corresponding 
coding scheme for each source. In the distributed environment with side information, to 
achieve the utility-privacy tradeoff region and the RDL region, the coding scheme for 

each source must be )D,2,n( i
nRi

code with restricted source rate iR and privacy leakage iL  
satisfying Corollary 1. 

 We provide four influence factors of source coding rate and privacy leakage degree, and 
show the quantitative analysis of the effect.  

 We quantitatively give the privacy-utility tradeoff region and Rate-Distortion-Leakage 
(RDL) region, which includes all feasible results (coordinate points) of the distributed 
privacy-utility tradeoff problem. 

 Using Public Health Care datasets, we compare the proposed method with the existing 
ones, and illustrate the advantage and usefulness of our method in five aspects. And also, 
this method could be applied to privacy issues in  other application scenarios. 
The remainder of this paper is organized as follows: Section 2 provides a distributed 

privacy-utility tradeoff method using distributed lossy source coding with side information, 
which contains theoretical analysis and formal derivation of this method. Simulation results 
and analysis are provided in Section 3 to justify the advantage of our method. Finally, Section 
4 concludes this paper and outlines the future research. 

2. Distributed privacy-utility tradeoff method with side information 
In the distributed environment, each data participant (each data source) owns part of the 
dataset. All data participants send data to the data center. Each data participant must take 
efforts to keep its source data private from both other participants. In addition, each 
participant’s dataset should be distorted separately. At the data center, the whole dataset will 
be reconstructed by the user, and also the user may have side information about the dataset. In 
order to solve the problem in the distributed environment with side information, this paper 
extends the centralized utility-privacy tradeoff model using distributed lossy source coding 
theory with side information. 

2.1 Centralized utility-privacy tradeoff model without side information 
The model provided by Sankar [23] encodes the public attributes to hide the private ones, 
which are correlated with public attributes. All of these attributes are stored in the centralized 
environment. Then, Sankar provided the concepts of data utility, data privacy and privacy 
leakage and quantified them. In addition, the relationships of the rate and privacy leakage 
versus distortion are shown to quantify the privacy-utility tradeoff. 
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In this model, a database d is a table with n entries (rows) and K public attributes 
(columns, denoted by X), in which private attributes denoted by Y are deleted before coding. 
The privacy-utility problem modeled by source coding theory with single source is shown in 
Fig. 1, in which nX denotes public attributes(non-sensitive) to be distorted by source encoding, 

nX̂ denotes the revealed attributes, and R denotes the source coding rate. 
 

Encoder DecodernX
}2,,2,1{)X(f nRn

∈
nX̂

 
Fig. 1. Single source coding theme without side information 

 
By quantitatively defining two metrics named utility u, privacy e (or privacy leakage l) 

and corresponding bounds D, E (or L), utility is mapped to distortion and privacy to 
information uncertainty by entropy (or privacy leakage by mutual information). 

So, the problem of finding the privacy-utility tradeoff region is to obtain the 
Rate-Distortion-Equivocation (RDE) region or Rate-Distortion-Leakage (RDL) region. RDE 
region (or RDL region) is the set of all feasible tuples (R, D, E) (or (R, D, L)) for which there 
exists encoder f and decoder g with parameters (n, M, u, e) or (n, M, u, l) satisfying the 
constraints of each bound(D, E, L) and rate constraint ( nR2M ≤ ). 

If a desired utility bound D is given, we need to obtain the set of all rate-equivocation 
tradeoff points (R, E) or the set of all rate-leakage tradeoff points (R, L). The set of all 
rate-equivocation tradeoff points (R, E) satisfies 





=≤
=≥

)X̂|Y(H)D(EE

)X̂;X(I)D(RR                                                           (1) 

and the set of all rate-leakage tradeoff points (R, L) satisfies 

 




=−=≥
=≥

)X̂;Y(I)X̂|Y(H)Y(H)D(LL

)X̂;X(I)D(RR                                                (2) 

However, this method is not used directly in the distributed environment. So, this paper 
provides a distributed method using distributed lossy source coding with side information. 

2.2 Distributed lossy source coding with side information 
Distributed privacy-utility tradeoff is illustrated quantitatively by the relationship functions of 
the rate and privacy leakage versus distortion, which is based on the rate-distortion theory and 
distributed lossy source coding theory with side information(from other information sources). 
 

Encoder 1

Encoder r

... Decoder
)X̂,,X̂( r1 

...
...

}2,,2,1{ 1Rn


}2,,2,1{ rRn


{

1X

rX

 
Fig. 2. Distributed source coding system with side information at the decoder 
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Distributed source coding (DSC) is an important problem in information theory and 

communication. DSC problems regard the compression of multiple independent information 
sources that do not communicate with each other. The distributed source coding system with 
side information is shown in Fig. 2. It is assumed that all links between encoders and decoders 
are noiseless and the data sources are noiseless ones. 

In order to facilitate the description of distributed privacy-utility tradeoff model, a coding 
scheme with two sources and side information is shown in Fig. 3. 

 

Encoder 1

Encoder 2

Decoder
)X̂,X̂( 21

}2,,2,1{ 1Rn


}2,,2,1{ 2Rn


Encoder {
{

{’

1X

2X

 
Fig. 3. Two source coding system with side information at the decoder 

 
Let }S,X,X{ 21 be real-valued independent and identically distributed (i.i.d.) sources and 

side information. Let )X̂,X(d ii  be the difference distortion measure between iX and iX̂ (i=1,2) . 
Definition 1: A )D,D,R,R,n( 2121 coding scheme for the joint source )X,X( 21 with side 

information S at the decoder consists of two encoding functions 





=′→
=′→

}M,,2,1{XX:f

}M,,2,1{XX:f

2222

1111



                                                (3) 

, satisfying inR
i 2M ≤ (i=1, 2) and two decoding functions 







→′×′
→′×′

222

111

X̂SX:g

X̂SX:g                                                         (4) 

, satisfying 11111 D))S),X(f(g,X(d ≤′Ε  , 22222 D))S),X(f(g,X(d ≤′Ε and the average distortion 
δ+≤∆ ii ∆ for i=1, 2. 

2.3 Distributed privacy-utility tradeoff method 
Based on the Definition 1, the goal of this paper is to find the RDE region or RDL region in 
distributed data sources with side information. So, we need to find the quantified relationship 
between source coding rate (R), privacy leakage (L) and distortion (D), which means )D(R i  
and )D(L i  are quantified, and further to obtain the set of (R, D, E) or (R, D, L). 

Corollary 1: The two source coding system with side information S is shown as Fig. 3 and 
the two sources and side information satisfy Gaussian distribution ),0(N~X 2

ii σ （i=1,2）and 
),0(N~S 2

Sσ  separately. Each source is coded with the data rate 

)]21(
D

log[
2

1
)D(R SR22

iS
2
iS

i

2
i

ii
−⋅+−≥ ρρσ                                 (5) 

https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Communication
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, and the privacy leakage of each source at the decoder with the side information S is 

)
D1

1
log(

2

1
)

D1

1
log(

2

1
)D(L

2
SS

2
SY

2
SY

2
ii

2
YX

2
YX

ii

iiiiii
σρρσρρ +−

+
+−

≥             (6) 

, in which SR is the rate of side information S, SD  is the rate distortion of S,
Si

i
iS

)SX(E

σσ
ρ = , 

ii

ii
YX

ii
YX

)YX(E

σσ
ρ =  and 

i

i
YS

i
SY

)SY(E

σσ
ρ =  (for i=1, 2) are correlation coefficients.  

Proof of Corollary 1:  
Because the side information is coded by the encoder S with the function 

}2,,2,1{SS:f SnR
S =′→ , we get )X(hMlog)R(n iii ′≥≥+ δ )S|X;X()S|X(h ii

)2(

i

)1(

′′Ι=′′≥  

)S;X()X̂;X()S;X()S,X;X( iiiiii

)3(

′Ι−Ι≥′Ι−′′Ι= . 
(1) is obtained because conditioning S′ reduces the entropy of iX′ , (2) holds because of the 

fact that iX′  is the function of iX , and (3) obeys the chain rule of mutual information. 
Observe that iXSS →→′ are Markov chains. Define 

)X̂;X(
n

1
inf)D(F ii

D:X̂
in

iii

Ι=
≤D

and )S;X(
n

1
sup)R(G i

XSS

R)S;S(
n

1
:S

Sn

i

S

′Ι=

→→′

≤′Ι′

. 

Then, we obtain )R(G)D(FR Snini δδδ +−+≥+ .So, the lower bound on )D(F in and the 
upper bound on )R(G Sn  can be derived separately as in [24]: 

i

2
i

in
D

log
2

1
)D(F

σ
≥ , and )

21

1
log(

2

1
)R(G

SR22
iS

2
iS

Sn −⋅+−
≤

ρρ
.             (7) 

Finally, we get 

≥+ δiR +
+ δ
σ

i

2
i

D
log

2

1
log

2

1
)21(
)R(22

iS
2
iS

S δρρ +−⋅+− .                (8) 

Letting 0→δ on the above inequality, we have 

)]21(
D

log[
2

1
)D(R SR22

iS
2
iS

i

2
i

ii
−⋅+−≥ ρρσ , i=1, 2                        (9) 

, in which iSρ is the correlation coefficient between Xi and side information S satisfying 

Si

Si
iS

)XX(E

σσ
ρ = . So (5) is proved. 

As we know, )X̂|S;Y()X̂;Y()SX̂;Y()SX̂|Y()Y()D(LL iiiiiiiiii ′Ι+Ι=′Ι=′Η−Η=≥ .  
Because S and iX̂  are statistically independent, and also iYSS →→′ are Markov chains, 

we get )S;Y()X̂;Y()D(L iiii Ι+Ι= . 

With the result in [25], we obtain )
D1

1
log(

2

1
)X̂;Y(

2
ii

2
YX

2
YX

ii

iiii
σρρ +−

=Ι , and  

)
D1

1
log(

2

1
)S;Y(

2
SS

2
SY

2
SY

i

ii
σρρ +−

=Ι . So 
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)
D1

1
log(

2

1
)

D1

1
log(

2

1
)D(L

2
SS

2
SY

2
SY

2
ii

2
YX

2
YX

ii

iiiiii
σρρσρρ +−

+
+−

≥ .             (10) 

Corollary 1 is proved.  

With the result in [23], we get )
D

log(
2

1
R

S

2
S

S

σ
= . (5) is changed into 

]
D

1(
D

log[
2

1
)D(R

2
S

S2
iS

2
iS

i

2
i

ii
σ

ρρσ
⋅+−≥ .                                        (11) 

So, the minimal distortion rate of each source is the right part of (11). The set of all RDL 
tuples in (5) and (6) forms the RDL region, (5) and (6) specify the boundaries of this region. 

)D(R ii given by (5) is the minimal rate and )D(L ii given by (6) is the minimal privacy leakage 
for any choice of the distortion D of each source. 

Therefore, in the distributed environment with side information, to achieve the 
utility-privacy tradeoff region and the RDL region, the coding scheme for each source must 

be )D,2,n( i
nRi

code with restricted source rate iR and privacy leakage iL  satisfying Corollary 1. 

3. Result analysis 
There are two main types of attributes in a database: categorical and numerical. In general, a 
database has these both two types of attributes. In order to simplify simulation process and 
analysis, this paper only consider the numerical attributes. In all databases, a medical database 
is  a typical one containing lots of numerical data, which is used for privacy analysis.  

The National Association of Health Data Organizations (NAHDO) reported that 37 states 
in the USA have legislative mandates to collect hospital level data and that 17 states have 
started collecting ambulatory care data from hospitals, physicians offices, clinics, and so forth. 
In Massachusetts, the Group Insurance Commission (GIC) is responsible for purchasing 
health insurance for state employees. GIC collected patientspecific data with nearly one 
hundred attributes for approximately 135,000 state employees and their families, which is 
named as Massachusetts Public Health Care Database. Among these attributes, there are Zip 
Code, Gender, Birth Date, Ethnicity, Weight, Blood Pressure, Diagnosis, Medication, Total 
Charge and etc. We only select the numberical attributes to form the new data set, such as 
Weight and Blood Pressure. Such numerical attributes are often assumed to be normally 
distributed or Gaussian distributed. We consider the numerical database with public 
attributes(Weight, Blood Pressure) expressed as X and private ones(Total Charge) expressed 

as Y, satisfying X and Y are jointly normally distributed with means Xµ , µ Y and variances 
2
Xσ ,

2
Yσ  respectively, and a correlation coefficient XYρ .  

If we have 16 other states’ Public Health Care Database, a distributed data sets with 16 
data sources is formed.  This paper considers two data sources and we suppose that each 

source is Gaussian distribution satisfying ),0(N~X 2
ii σ （i=1,2）. If a user not only knows the 

revealed information iX̂ , but has the side information SX satisfying ),0(N~X 2
SS σ , we need to 

know the quantitative results of R(D), L(D), privacy-utility region, RDL region, and by what 
factors these results are affected.  

In this section, we use MATLAB software to do simulation tests and analyze the results 
from the following aspects. 
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Firstly, the following influencing factors of source rate and privacy leakage are analyzed. 
iSρ ：correlation coefficient between each data source i and side information source S, 

iiYXρ ：correlation coefficient between public attributes and private attributes of data 
source i, 

2
iσ ：statistical variance  of  data source i, 
2
Sσ ：statistical variance of side information S. 

Then, a quantitative representation of the privacy utility tradeoff region in a distributed 
scenario with side information is given. 

Finally, the quantitative Rate-Distortion-Leakage (RDL) region in a distributed scenario 
with side information is given under the given parameters.  

 

3.1 Influence of data distortion degree on the source rate with different iSρ  
Using (11), determined values 12

S
2
i == σσ  and 4.0DS = , the quantitative relationship of 

rate versus distortion with different correlation coefficient iSρ is shown in Fig. 4. Fig. 4 shows 
that with the increase of distortion degree, the source rate decreases significantly and then 
slows down. In addition, the greater the correlation coefficient between data source iX and side 
information S, the more obvious the influence of the source distortion increase on the source 
rate reduction. Under the same distortion (utility), the more relevant with the side information, 
the lower coding rate of the source to ensure a certain degree of privacy, which means that this 
source is coded with few symbols (less represented information source). 
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Fig. 4. Plot of R versus D with different iSρ          Fig. 5. Plot of L versus D with different

iiYXρ  

3.2 Influence of data distortion degree on the privacy leakage with different 
iiYXρ  

Using (10), and determined values 1,5.0D,5.0 2
i

2
SS

2
SYi

==== σσρ , the quantitative 
relationship of privacy leakage versus distortion with different correlation coefficients 
between public attributes and private attributes is shown in Fig. 5. Fig. 5 shows that with the 
increase of distortion degree, the privacy leakage decreases significantly and then slows down. 
In addition, the larger the correlation coefficient between public data X and private data Y , the 
more obvious the effect of the source distortion increase on the privacy leakage reduction. 
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Since privacy information Y is not released, but release information X. Therefore, if there is a 
strong correlation between these two information, it is possible to infer the privacy 
information Y using released information X̂ through appropriate association analysis. That is 
to say, under the same privacy restrictions, the finer relevance between public data and private 
data of source, the finer perturbation of data source X is needed. 

3.3 Influence of data source statistical variance 2
iσ on the rate and privacy 

leakage 

Using (10), (11), and determined values 12
S =σ , 6.02

iS =ρ , 5.0DS = , 5.02
SY

2
YX iii

== ρρ , 
the quantitative relationship of the source rate and privacy leakage versus distortion with 
different 

2
iσ  is shown in Fig. 6. Fig. 6 show that with the same distortion, the greater the 

variance of the data source, the higher the source rate and the privacy leakage.  Fig. 6 
illustrates two points. The first is that the greater the variance of the data source’s distribution, 
the smaller distortion is chosen to ensure more data utility. The second is that under the same 
distortion (utility), the greater the variance of the data source’s distribution, the higher the 
source rate, which means that this source is coded with more symbols (more represented 
information source) while the privacy is less disclosed.  
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Fig. 6. Plot of R and L versus D with different 2

iσ       Fig. 7. Plot of R and L versus D with different 2
Sσ  

3.4 Influence of side information statistical variance 2
Sσ on the rate and privacy 

leakage 

Using (10), (11), and determined values 12
i =σ , 5.02

iS =ρ , 8.0DS = , 5.02
SY

2
YX iii

== ρρ , 
the quantitative relationship of the source rate and privacy leakage versus distortion with 
different 2

Sσ  is shown in Fig. 7. Fig. 7 shows that the greater the variance of the side 
information, the greater effect of the source distortion increase on the source rate reduction 
and the greater privacy leakage level. Fig. 7 illustrates two points.  The first one is that under 
the same privacy restriction, the smaller the variance of the side information’s distribution, the 
less distortion of data source is chosen to ensure more data utility. The second one is that under 
the same distortion (utility), the greater the variance of the side information’s distribution, the 
lower the source rate, which means that this source is coded with less symbols(less represented 
information source) to ensure certain privacy.  
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3.5 Analysis of the privacy-utility region 
Fig. 8 shows three regions, which are strong privacy region, privacy-utility tradeoff region, 
and strong utility region. Strong privacy region has very poor utility, and strong utility region 
has bad privacy. So, this paper quantitatively gives the privacy-utility tradeoff region using 
distributed source coding theory with side information. 

3.6 Analysis of the Rate-Distortion-Leakage (RDL) region 

Using (10), (11), and determined values 64.02
SY

2
YX

2
iS iii

=== ρρρ , 1,0D 2
S

2
iS === σσ , 

the Rate-Distortion-Leakage (RDL) region described in section 3.3 is shown as Fig. 9. In the 
Fig. 9, the RDL region is the set of all RDL tuples satisfying (5) and (6). In this region, the rate 
boundary is minimal rate and the privacy leakage boundary is the minimal privacy leakage 
defining by (5) and (6) seperately. 

Seperately given the statistical distributions of two sources and side information, we 
could get the distortion boundary Dmax, rate boundary, privacy leakage boundary and RDL 
region. All points that meet the privacy-utility tradeoff need are in the RDL region. 
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Fig. 8. Region of privacy-utility tradeoff           Fig. 9. Rate-Distortion-Leakage (RDL) region 

3.7 Comparisons 
The provided method in this paper is compared with the existing literatures from the following 
aspects: 

(1) whether or not to propose a formal privacy-utility tradeoff model, 
(2) whether or not to consider the impact of side information on the privacy disclosure 

and utility of revealed data,  
(3) whether or not to qualitatively give the privacy-utility tradeoff region,  
(4) whether or not to consider the privacy-utility tradeoff problem in distributed 

application scenarios with side information,  
(5) whether or not to quantitatively give all feasible results(coordinate points) of the 

distributed privacy-utility tradeoff problem.  
The comparision results are listed in Table 1. Table 1 illustrates the advantages of our 

method in the above five aspects, compared with existing methods. 
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Table 1.  Comparisons of different methods 
  methods 
 
aspects 

[4-6] [7、9] [8、10] [11-12] [13-14] [15] [16-22] [23] Our 
method 

(1) Y N Y N Y N Y Y Y 
(2) N N N N N N N Y Y 
(3) N N N N N N N Y Y 
(4) N N N N N N N N Y 
(5) N N N N N N N N Y 

Remarks: Yes(Y), No(N) 

4. Conclusion 
In order to balance the privacy and utility of data in distributed environment and adversary 
having background knowledge, this paper proposes a privacy-utility tradeoff model using 
distributed source coding theory with side information. In this model, each variable 
representing the public data of different source is coded independently, and the quantitative 
relationship of each source rate and privacy leakage versus distortion is presented. Besides, the 
result gives the quantified privacy-utility tradeoff region and RDL region. In this paper, a 
theoretical analysis is made only on the distributed scene with two sources, which meet the 
assumption of independent and identically distributed (i.i.d.). In the future, this model is 
extended to multiple sources with non-i.i.d. dataset, and the privacy-utility tradeoff region and 
RDL region will be given. More real datasets will be used in other application scenarios (such 
as Location Based Services and Location Information Verification [26]) to valid the provided 
method in this paper. 
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