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I. INTRODUCTION 
 

In distributed estimation systems where many sensor 

nodes located at different sites operate on power-limited 

batteries, each node monitors its environmental conditions, 

such as temperature, pressure, or sound, related to the 

parameter of interest and sends the data to a fusion node, 

which then estimates the parameter value. In such power-

constrained systems, the quantization of sensing data has 

been an attractive topic of research for signal processing 

researchers since efficient quantization at each node has a 

significant impact on the rate-distortion performance of the 

system. 

For a source localization system where each sensor 

measures the signal energy, quantizes it, and sends the 

quantized sensor reading to a fusion node where the 

localization is performed, the maximum likelihood (ML) 

estimation problem using quantized data was addressed and 

the Cramer–Rao bound (CRB) was derived for comparison 

[1], assuming that each sensor used identical (uniform) 

quantizers. However, if the node locations are known prior 

to the quantization process, sensor nodes can exploit the 

correlation between their measurements to design quantizers 

minimizing the system-wide metric (i.e., the estimation 

error) to replace typical quantizers, which would be devised 

to minimize the local metric, such as the reconstruction 

error. It has been demonstrated that a significant per-

formance gain can be achieved by using such quantizers 

with respect to simple uniform quantization at all nodes. 

There is a difficulty in designing independently and 
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Abstract 

We consider quantization optimized for distributed estimation, where a set of sensors at different sites collect measurements 

on the parameter of interest, quantize them, and transmit the quantized data to a fusion node, which then estimates the 

parameter. Here, we propose an iterative quantizer design algorithm with a weighted distance rule that allows us to reduce a 

system-wide metric such as the estimation error by constructing quantization partitions with their optimal weights. We show 

that the search for the weights, the most expensive computational step in the algorithm, can be conducted in a sequential 

manner without deviating from convergence, leading to a significant reduction in design complexity. Our experments 

demonstrate that the proposed algorithm achieves improved performance over traditional quantizer designs. The benefit of the 

proposed technique is further illustrated by the experiments providing similar estimation performance with much lower 

complexity as compared to the recently published novel algorithms. 
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locally operating quantizers that minimize a global metric 

(e.g., the estimation error is a function of measurements 

from all nodes). To circumvent this, a cooperative design-

separate encoding approach was suggested for a decen-

tralized hypothesis testing system [2] where a distributional 

distance was used as a criterion for quantizer design in order 

to yield a manageable design procedure. The necessary 

conditions for the optimal quantization partition construction 

were formulated for distributed estimation systems [3]. A 

related issue is quantizer design at each node in distributed 

source coding (DSC) frameworks, in which data collected at 

different locations must be encoded separately and comm-

unicated to a fusion center by using limited transmission 

rates. Practical quantization methods for correlated sources 

have been studied in [4-6]. 

Previously, we proposed iterative quantizer design 

algorithms in the Lloyd algorithm framework (see also [7-

9]), which design independently operating quantizers by 

reducing the estimation error at each iteration. Since the 

Lloyd algorithm is focused on minimizing a local metric 

(e.g., reconstruction error of local sensor readings) during 

quantizer design, some modification would be inevitable in 

order to achieve convergence with the global metric in the 

Lloyd design. Hence, we suggested a weighted sum of both 

the metrics as a cost function (i.e., local + λ ×  global, λ ≥ 0) 

along with a search for appropriate weights. Finding the 

weight λ that guarantees the convergence is the most 

expensive computational process and should be repeated in 

each iteration, leading to a high computational cost. In [10], 

novel non-regular mapping between quantization partitions 

and their codewords was iteratively constructed to achieve 

improved performance over typical designs. In particular, 

quantizers with a many-to-one correspondence were shown 

to yield a significant improvement at the cost of a huge 

computational complexity. 

In this paper, we propose an iterative design algorithm in 

the generalized Lloyd framework that seeks to design 

independently operating scalar quantizers by partitioning 

quantization regions based on the weighted distance rule so 

as to minimize the estimation error. We search for the 

weights corresponding to the codewords such that the 

weighted partition of the regions using the codewords will 

result in an iterative reduction in the system-wide perfor-

mance metric. To avoid a high computational complexity, 

we suggest a sequential search for the weights without 

causing performance degradation. We show that convergence 

of the proposed algorithm is guaranteed by reducing the 

global metric in each iteration and applying our design 

algorithm to a source localization system where the acoustic 

amplitude sensor model proposed in [11] is considered. We 

demonstrate through experiments that improved perfor-

mance over traditional quantizer designs can be achieved by 

using our design technique. We also evaluate the proposed 

algorithm by a comparison with recently published novel 

design techniques [9, 10], both of which were recently 

developed for source localization in acoustic sensor 

networks, the application considered in this work. As 

expected, the weighted distance rule adopted in the 

proposed algorithm shows obvious advantage over the 

regular designs in terms of localization accuracy. 

The rest of this paper is organized as follows: we present 

the problem formulation for quantizer design in distributed 

estimation in Section II. We then consider quantization 

based on weighted distance and elaborate the proposed 

design process in the Lloyd algorithm framework in Section 

III. As an application system, we consider source 

localization in acoustic sensor networks in Section IV and 

then, evaluate the proposed technique for this system in 

Section V. Finally, we present the conclusions and future 

directions for research on distributed systems in Section VI. 

 

 

II. PROBLEM FORMULATION 
 

In distributed estimation systems, it is assumed that M 

sensor nodes are spatially placed at known locations in a 

sensor field, denoted by xi ∈ R
2
, i = 1, …, M, and collect 

measurements on the unknown parameter θ ⊂ R
N
 to be 

estimated. The measurement zi at node i can be expressed as 

follows: 

 

            𝑧𝑖 = 𝑓𝑖(𝜃) + 𝜔𝑖                  (1)    

 

where fi(θ) denotes the sensing model employed at node i 

and ωi represents the measurement noise approximated by 

normal distribution N(0, σi
2
). It is assumed that a quantizer 

of Ri bits with a dynamic range [zi,min zi,max] is employed at 

sensor i. Note that the quantization range can be selected for 

each sensor on the basis of the desirable properties of their 

respective sensing ranges [12]. 𝑧̂𝑖
𝑗

 denotes the j-th 

codeword at sensor i, which is generated whenever the 

measurement zi belongs to the j-th quantization partition 𝑉𝑖
𝑗
. 

Each node quantizes its measurement and sends the 

quantized result to a fusion node, which estimates the value 

of the parameter 𝜃  on the basis of the quantized 

measurements, 𝑧̂i, i = 1, …, M from all nodes. In this work, 

it is assumed that we are given a good estimator 𝜃, which is 

used to compute the estimation error during the quantizer 

design process. For details about estimators that operate on 

quantized data, see [13, 14]. 

 

 

III. QUANTIZATION BASED ON WEIGHTED 
DISTANCE 

 

Standard quantization follows the minimum distance rule 
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on which the next quantization partition is conducted as well 

as the codeword computation in an iterative manner. 

Formally, the Voronoi region construction (i.e., quantization 

partitions) is defined as follows: 

 

𝑉𝑖
𝑗

= {𝑧𝑖: |𝑧𝑖 − 𝑧̂𝑖
𝑗
|

2
≤ |𝑧𝑖 − 𝑧̂𝑖

𝑘|
2
, ∀𝑘 ≠ 𝑗} , 𝑗 = 1, … , 𝐿𝑖  

 (2) 

 

where Li = 2
Ri

 represents the number of quantization 

partitions and 𝑉 𝑖
𝑗
 consists of measurement samples that 

would minimize the distortion  |𝑧𝑖 − 𝑧̂𝑖|
2  if they were 

assigned to the j-th quantization partition. The codewords 

are also updated to minimize the distortion over the 

corresponding quantization partitions: 

 

𝑧𝑖̂
𝑗

= 𝐸[𝑧𝑖|𝑧𝑖 ∈ 𝑉𝑖
𝑗
], 𝑗 = 1, … , 𝐿𝑖     (3) 

 
Clearly, the two main steps defined as Eqs. (2) and (3) in 

the typical Lloyd design minimize the average 

reconstruction error E|𝑧𝑖 − 𝑧̂𝑖|
2. However, minimizing the 

reconstruction error would not produce quantizers that 

minimize the estimation error 𝐸‖𝜃 − 𝜃‖
2

, which is our 

system-wide distortion to be minimized in the proposed 

design algorithm. In this work, we propose a weighted 

distance rule to build quantization partitions such that the 

estimation error is reduced at each iteration. First, we 

construct the Voronoi region for each weight λi
j
, j = 1, …, Li 

as follows: 

 

𝑉𝑖
1 = {𝑧𝑖: 𝑧𝑖,𝑚𝑖𝑛 ≤ 𝑧𝑖 ,  

𝜆𝑖
1|𝑧𝑖 − 𝑧̂𝑖

1  |2 ≤ (1 − 𝜆𝑖
1)|𝑧𝑖 − 𝑧̂𝑖

2  |2} 

𝑉𝑖
𝑗
(𝜆𝑖

𝑗
) = {𝑧𝑖: 𝜆𝑖

𝑗−1
|𝑧𝑖 − 𝑧̂𝑖

𝑗−1
  |

2
≥ (1 − 𝜆𝑖

𝑗−1
)|𝑧𝑖 − 𝑧̂𝑖

𝑗
  |

2
, 

           𝜆𝑖
𝑗
|𝑧𝑖 − 𝑧̂𝑖

𝑗
  |

2
≤ (1 − 𝜆𝑖

𝑗
)|𝑧𝑖 − 𝑧̂𝑖

𝑗+1
  |

2
} 

𝑉𝑖

𝐿𝑖 = {𝑧𝑖: 𝜆𝑖

𝐿𝑖−1
|𝑧𝑖 − 𝑧̂𝑖

𝐿𝑖−1
  |

2
≥ (1 − 𝜆𝑖

𝐿𝑖−1
)|𝑧𝑖 − 𝑧̂𝑖

𝐿𝑖  |
2

, 

𝑧𝑖 ≤ 𝑧𝑖,𝑚𝑎𝑥}.     (4) 

 

It is noted that the minimum distance rule is generated 

with λi
j
 = ½ , which will create the standard construction 

defined in Eq. (2). Our weighted distance rule considers 

various cases of partitioning determined by the weights 0 < 

λi
j
 < 1. This will produce a set of candidate partitions for our 

design process. 

Second, we search for the optimal weight starting with 

λi
1* 

that minimizes the estimation error over the corres-

ponding quantization partition: 

 

𝜆𝑖
𝑗∗

= 𝑎𝑟𝑔 𝑚𝑖𝑛
0<𝜆𝑖

𝑗
<1

𝐸 [‖𝜃 − 𝜃(𝑧̂𝑖
𝑗
)‖

2
|𝑧𝑖 ∈ 𝑉𝑖

𝑗
(𝜆𝑖

𝑗
)] (5) 

where 𝜃(𝑧̂𝑖
𝑗
) , the abbreviated notation for 

𝜃(𝑧̂1, … , 𝑧̂𝑖
𝑗
, … , 𝑧̂𝑀), can be computed by replacing 𝑧̂𝑖 with 

𝑧̂𝑖
𝑗
 for all i. Note that the search for the optimal weight can 

be conducted in a sequential manner without causing the 

divergence problem that typically exists in iterative 

algorithms. Furthermore, in calculating the j-th optimal 

weight, only samples zi > 𝑧̂𝑖
𝑗
, zi ∈ Vi

j
 can be considered 

since only these samples create a relative difference in the 

estimation error as the weight λi
j
 is varied in Eq. (5). These 

benefits of the proposed algorithm allow us to achieve a 

substantial reduction in computational complexity while 

maintaining the non-increasing distortion at each step. 

Once the optimal weights are obtained, the next step 

would be to update the codewords over the Voronoi regions 

determined by their corresponding optimal weights: 

formally, 

 

𝑧̂𝑖
𝑗∗

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑧̂𝑖

𝑗 𝐸 [‖𝜃 − 𝜃(𝑧̂𝑖
𝑗
)‖

2
|𝑧𝑖 ∈ 𝑉𝑖

𝑗
(𝜆𝑖

𝑗∗
)].  (6) 

 

Note that the construction of the Voronoi regions, the 

search for optimal weights, and the subsequent computation 

of the codewords given in Eqs. (4), (5), and (6), respectively, 

are repeated at each sensor node until a certain criterion is 

satisfied. Clearly, these procedures are guaranteed to reduce 

the estimation error in each iteration, leading to convergence 

of the design algorithm. 

 

A. Summary of Proposed Algorithm 
 

Given Li = 2
Ri

 at sensor i, the algorithm is summarized as 

follows and is iteratively conducted over all sensors i = 1, ..., 

M until a certain criterion in the estimation error is achieved: 

 

Algorithm 1: Iterative quantizer design algorithm at 

sensor i 

Step 1: Initialize the quantizers with 𝑉𝑖
𝑗
 and 𝑧̂𝑖

𝑗
, j = 1, 

…, Li. Set thresholds ϵ  and iteration index κ = 1. 

Step 2: For each λi
j
, construct the partitions 𝑉𝑖

𝑗
, j = 1, …, 

Li by using Eq. (4). Once the Voronoi region construction is 

completed, compute the optimal weight by using Eq. (5). 

Step 3: Given a set of optimal weights {λi
j*
}, update the 

codewords 𝑧̂𝑖
𝑗∗

, j = 1, …, Li by using Eq. (6). 

Step 4: Compute the average distortion D=  𝐸‖𝜃 − 𝜃‖
2

  

by using the updated codewords 𝑧̂𝑖
𝑗∗

. 

Step 5: If (Dκ−1 − Dκ)/Dκ< ϵ , stop; otherwise, continue. 

Dκ indicates the average distortion D at the κ-th iteration. 

Step 6: Replace 𝑧̂𝑖
𝑗
 by 𝑧̂𝑖

𝑗∗
 i. κ = κ + 1 and go to Step 2. 

 

Note that the quantizers are designed offline by using a 

training set that is generated on the basis of Eq. (1) and the 

parameter distribution p(θ) for a given sensor node 

configuration; clearly, this design process makes use of 
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information about all measurements, and when the resulting 

quantizers are in actual use, each sensor uses its optimal 

weights to quantize the measurement available to it 

independently. A discussion of the sensitivity of our 

quantizer to the parameter perturbation of the sensor model 

is presented in Section V. 

 

 

IV. APPLICATION OF QUANTIZER DESIGN 
ALGORITHM 

 

We apply our design algorithm to a source localization 

system where sensor nodes equipped with acoustic 

amplitude sensors measure source signal energy, quantize it, 

and transmit the quantized data to a fusion node for 

estimation. For collecting the signal energy readings, we use 

an energy decay model proposed in [11], which was verified 

by a field experiment and was also used in [15, 16]. This 

model is based on the fact that the acoustic energy emitted 

omnidirectionally from a sound source will attenuate at a 

rate that is inversely proportional to the square of the 

distance in free space [17]. When an acoustic sensor is 

employed at each node, the signal energy measured at node i 

and denoted by zi can be expressed as follows: 

 

𝑧𝑖(𝜃) = 𝑔𝑖
𝑎

‖𝜃−𝑥𝑖‖𝛼 + 𝜔𝑖.            (7) 

 

Note that θ indicates the source location to be estimated 

and the sensor model fi(θ) in Eq. (1) is replaced by the 

acoustic sensor model, which consists of the gain factor of 

the i-th node gi, an energy decay factor α, which is 

approximately equal to 2 in free space, and the source signal 

energy a. The measurement noise term ωi can be 

approximated using a normal distribution, N(0, σi
2
). It is 

assumed that the signal energy a is known prior to 

estimation in this work, but the signal energy is typically 

modeled as a uniform distribution and can be jointly 

estimated along with the source location [13]. 

 

 

V. SIMULATION RESULTS 
 

In this section, we discuss a weighted distance-based 

quantizer (WDQ), the quantizer designed using the 

algorithm proposed in Section III-A. In designing WDQ, we 

use the equally distance-divided quantizer (EDQ) to 

initialize quantizers (see Step 1 in Section III-A) because 

EDQ can be used as an efficient initialization for quantizer 

design due to its good localization performance in acoustic 

amplitude sensor networks [8, 9]. We generate a training set 

from the uniform distribution of source locations and the 

model parameters in Eq. (7) set as a = 50, α = 2, gi = 1, and 

σi
2
 = σ

2
 = 0. Lloyd quantizers corresponding to λi

j
 = 1/2, ∀j 

are also designed from the same training set for comparison. 

In the experiments, we consider a sensor network where M 

(=5) sensors are deployed in a sensor field measuring 10 ×  

10 m
2
. We design quantizers by various algorithms and 

evaluate them by using test sets generated from the same 

model parameters. The experimental results are provided in 

terms of the average localization error 𝐸‖𝜃 − 𝜃‖
2

. In these 

experiments, the localization error is computed using the 

ML estimation for fast computation. 

 

A. Performance Comparison with Typical 
Designs 

 

In this experiment, 100 different five-node con-

figurations are generated in a sensor field measuring 10 ×  

10 m
2
. A test set of 1000 random source locations is 

generated for each configuration to collect signal energy 

measurements with σi = 0. These measurements are then 

quantized by three different quantizers, namely, uniform 

quantizer (Unif Q), Lloyd quantizer (Lloyd Q), and WDQ 

with Ri = 2, 3, and 4 bits, respectively. The localization error 

in meters is averaged over 100 node configurations for each 

rate Ri. Fig. 1 shows the overall rate-distortion (R-D) 

performance for the different quantizers. As expected, WDQ 

outperforms the typical designs since the proposed 

technique exploits the correlation between the distributed 

measurements to construct the weighted quantization 

partitions that minimize the localization error. 

 

B. Performance Evaluation: Comparison with 
Previous Novel Designs 

 

In this experiment, we evaluate the proposed algorithm by 

comparing it with the previous novel designs, such as 

distributed optimized quantizers (DOQs) in [10] and the 

localization-specific quantizer (LSQ) in [9] since both of 

 

 

Fig. 1. Comparison of weighted distance-based quantizer (WDQ) with 

the uniform quantizer and the Lloyd quantizer: the average localization 
error in meters is plotted vs. the total rate (bits) consumed by five sensors. 
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them are optimized for distributed source localization and 

can be viewed as DSC techniques, which are developed as 

a tool to reduce the rate required to transmit data from 

all nodes to the sink. These design techniques are applied 

for 100 five-sensor configurations by using the EDQ 

initialization with Ri = 2, 3, 4 bits and tested by generating 

the two test sets of 1000 random source locations with σi = 0 

and σi = 0.15, respectively. The R-D performance curves are 

plotted for comparison in Fig. 2. It should be observed that 

the proposed algorithm offers good performance without 

incurring high computational complexity as compared to 

DOQ and LSQ. Note that DOQ operates in a non-regular 

framework, which requires a huge computation [10]. 

 
C. Sensitivity Analysis of Design Algorithms 
 

In this section, we first investigate how the performance 

of the proposed design algorithm can be affected by the 

perturbation of the model parameters with respect to the 

assumptions made during the quantizer design phase. We 

further examine the design algorithms to understand how 

sensitive the localization results will be with respect to the 

presence of the measurement noise. 

 

1) Sensitivity of WDQ to Parameter Perturbation 

We design WDQ with Ri = 3 for each of the 100 different 

five-sensor configurations and test them under various types 

of mismatch conditions. In this experiment, a test set of 

1,000 source locations is generated with a = 50 for each 

configuration by varying one of the model parameters. The 

simulation results are tabulated in Table 1. As seen in Table 

1, WDQ shows robustness to mismatch situations where the 

parameters used in quantizer design are different from those 

characterizing the simulation conditions. 

 

  

 

Fig. 2. Comparison of weighted distance-based quantizer (WDQ) with 

novel design techniques: The average localization error in meters is 
plotted vs. the total rate (bits) consumed by five sensors with σ

2
 = 0 (left) 

and σ
2
 = 0.15

2
 (right). LSQ: localization-specific quantizer, DOQ: 

distributed optimized quantizer. 

Table 1. Localization error (LE) of weighted distance-based quantizer 

(WDQ) with Ri = 3 due to variations of the model parameters  

LE is averaged in meters over 100 five-sensor configurations.  
 

 

 

Fig. 3. Sensitivity to noise level: the average localization error is plotted 

vs. signal-to-noise ratio (SNR) with M = 5, Ri = 3, and a = 50. LSQ: 
localization-specific quantizer, WDQ: weighted distance-based quantizer. 
 

 
2) Sensitivity of Design Algorithms to Noise Level 

We design quantizers with Ri = 3 for each of the 100 

different five-sensor configurations by using various design 

algorithms. The localization error 𝐸‖𝜃 − 𝜃‖
2
 is averaged 

over 100 configurations. We investigate the sensitivity to 

the noise level by generating a test set of 1,000 source 

locations for each configuration with a = 50 and the 

signal-to-noise ratio (SNR) in the range of 40–100 dB by 

varying σ. Note that the SNR is computed using 10 log10 

a
2
/σ

2
 and measured at 1 m from the source. For example, 

SNR = 40 dB corresponds to SNR = 5.5 dB measured at 

each sensor location on average. For a practical vehicle 

target, it is often much higher than 40 dB. A typical value of 

the variance of measurement noise σ
2
 is 0.05

2
 (=60 dB) [11, 

16]. Fig. 3 shows that the proposed quantizer is as robust to 

the measurement noise as the other designs. 

 
 
VI. CONCLUSIONS 
 

In this paper, we proposed an iterative quantizer design 

algorithm optimized for distributed estimation. Since the 

goal was to design independently operating quantizers that 

minimized the global metric such as the estimation error, we 

suggested a weighted distance rule that allowed us to 

partition quantization regions so as to reduce the metric 

Decay factor α 1.8 1.9 2.0 2.1 2.2 

LE 1.2642 0.9500 0.7383 0.9321 1.2444 

Gain factor gi 0.8 0.9 1.0 1.1 1.2 

LE 1.0638 0.8401 0.7383 0.8298 0.9445 
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iteratively in the generalized Lloyd algorithm framework. 

We showed that the system-wide metric could be minimized 

for quantizer design by searching the optimal weights in a 

sequential manner, yielding a substantial reduction in 

computational complexity. The proposed algorithm was 

shown to perform quite well in comparison with typical 

standard designs and previous novel ones. Furthermore, we 

demonstrated that the proposed quantizer operated robustly 

to mismatches of the sensor model parameters. In the future, 

we will continue to work on novel quantizer design 

methodologies and their theoretical analysis for distributed 

systems. 

 

 

ACKNOWLEDGMENTS 

 

This study was supported by a research fund from Chosun 

University, 2014. 

 
 

REFERENCES 
 

[ 1 ] R. Niu and P. Varshney, “Target location estimation in wireless 

sensor networks using binary data,” in Proceedings of the 38th 

Annual Conference on Information Sciences and Systems, 

Princeton, NJ, pp. 1-6, 2004. 

[ 2 ] M. Longo, T. D. Lookabaugh, and R. M. Gray, “Quantization for 

decentralized hypothesis testing under communication con-

straints,” IEEE Transactions on Information Theory, vol. 36, no. 2, 

pp. 241-255, 1990. 

[ 3 ] W. M. Lam and A. R. Reibman, “Design of quantizers for 

decentralized estimation systems,” IEEE Transactions on 

Communications, vol. 41, no. 11, pp. 1602-1605, 1993. 

[ 4 ] S. S. Pradhan and K. Ramchandran, “Distributed source coding 

using syndromes (DISCUS): design and construction,” IEEE 

Transactions on Information Theory, vol. 49, no. 3, pp. 626-643, 

2003. 

[ 5 ] A. Saxena, J. Nayak, and K. Rose, “Robust distributed source 

coder design by deterministic annealing,” IEEE Transactions on 

Signal Processing, vol. 58, no. 2, pp. 859-868, 2010. 

[ 6 ] N. Wernersson, J. Karlsson, and M. Skoglund, “Distributed 

quantization over noisy channels,” IEEE Transactions on Comm-

unications, vol. 57, no. 6, pp. 1693-1700, 2009. 

[ 7 ] Y. H. Kim and A. Ortega, “Quantizer design and distributed 

encoding algorithm for source localization in sensor networks,” 

in Proceedings of the 4th International Symposium on Information 

Processing in Sensor Networks (IPSN2005), Los Angeles, CA, pp. 

231-238, 2005. 

[ 8 ] Y. H. Kim and A. Ortega, “Quantizer design for source localization 

in sensor networks,” in Proceedings of IEEE International 

Conference on Acoustics, Speech, and Signal Processing 

(ICASSP2005), Philadelphia, PA, pp. 857-860, 2005. 

[ 9 ] Y. H. Kim and A. Ortega, “Quantizer design for energy-based 

source localization in sensor networks,” IEEE Transactions on 

Signal Processing, vol. 59, no. 11, pp. 5577-5588, 2011. 

[10] Y. H. Kim, “Quantizer design optimized for distributed estimation,” 

IEICE Transactions on Information and Systems, vol. 97, no. 6, pp. 

1639-1643, 2014. 

[11] D. Li and Y. H. Hu, “Energy-based collaborative source 

localization using acoustic microsensor array,” EURASIP Journal 

on Applied Signal Processing, vol. 2003, pp. 321-337, 2003. 

[12] H. Yang and B. Sikdar, “A protocol for tracking mobile targets 

using sensor networks,” in Proceedings of the 1st IEEE 

International Workshop on Sensor Network Protocols and 

Applications, Anchorage, AK, pp. 71-81, 2003. 

[13] Y. H. Kim and A. Ortega, “Maximum a posteriori (MAP)-based 

algorithm for distributed source localization using quantized 

acoustic sensor readings,” in Proceedings of IEEE International 

Conference on Acoustics, Speech, and Signal Processing 

(ICASSP2006), Toulouse, France, 2006. 

[14] Y. H. Kim, “Distributed estimation based on quantized 

data,” IEICE Electronics Express, vol. 8, no. 10, pp. 699-704, 

2011. 

[15] A. O. Hero and D. Blatt, “Sensor network source localization via 

projection onto convex sets (POCS),” in Proceedings of IEEE 

International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP2005), Philadelphia, PA, pp. 689-692, 2005. 

[16] J. Liu, J. Reich, and F. Zhao, “Collaborative in-network processing 

for target tracking,” EURASIP Journal on Applied Signal 

Processing, vol. 2003, pp. 378-391, 2003. 

[17] T. S. Rappaport, Wireless Communications: Principles and 

Practice. Upper Saddle River, NJ: Prentice Hall, 1996.

 

 

 

 

 

received his B.S. and M.S. in Electronic Engineering from Yonsei University, Seoul, Korea, in 1992 and 1994, 
respectively, and his Ph.D. in Electrical Engineering from University of Southern California in 2007. He is currently with 
Department of Electronic Engineering, College of Electronics & Information Engineering, Chosun University. His research 
interests include distributed compression/estimation in sensor networks with a focus on application-specific compression 
techniques, distributed source coding, and image compression/enhancement. 
 

 


