• Title/Summary/Keyword: Distributed routing

Search Result 313, Processing Time 0.027 seconds

A Nonblocking $Multi-Log_2N$ Multiconnection Network : Theoretical Characterization and Design Example for a Photonic Switching System (넌블럭킹 $Multi-Log_2N$다중 접속망 : 이론적 특성 및 광 교환시스템을 위한 설계예)

  • Yeong Hwan TSCHA;Kyoon Ha LEE
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.7
    • /
    • pp.680-695
    • /
    • 1991
  • In this paper, the conditions on the number of required copies of a self-routing network with and without extra stages in back-to-back manner are presented respectively for a nonblocking $Multi-Log_2N$ multiconnection network. Actually the obained results hold regardless of connection patterns, i.e., whether a network deploys on-to-one connections or multiconnections. Thus open problems on the nonblocking condition for a multi $Multi-Log_2N$ multiconnection network are solved. Interestingly some of the given formulas comprise the Benes network and the Canto network as a special case repectively. A novel switching system architecture deploying a distributed calls-distribution algorithm is provided to design a nonblocking $Multi-Log_2N$ photonic switching network using a directional coupler. And a directional couplex based call holding demultiplexer is introduced to hold a call until blocking disappears in a switching network and let it enter to a network, provided that the number of switching networks is less than that of required switching networks for a nonblocking $Multi-Log_2N$ network.

  • PDF

Accounting for zero flows in probabilistic distributed hydrological modeling for ephemeral catchment (무유출의 고려를 통한 간헐하천 유역에 확률기반의 격자형 수문모형의 구축)

  • Lee, DongGi;Ahn, Kuk-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.437-450
    • /
    • 2020
  • This study presents a probabilistic distributed hydrological model for Ephemeral catchment, where zero flow often occurs due to the influence of distinct climate characteristics in South Korea. The gridded hydrological model is developed by combining the Sacramento Soil Moisture Accounting Model (SAC-SMA) runoff model with a routing model. In addition, an error model is employed to represent a probabilistic hydrologic model. To be specific, the hydrologic model is coupled with a censoring error model to properly represent the features of ephemeral catchments. The performance of the censoring error model is evaluated by comparing it with the Gaussian error model, which has been utilized in a probabilistic model. We first address the necessity to consider ephemeral catchments through a review of the extensive research conducted over the recent decade. Then, the Yongdam Dam catchment is selected for our study area to confirm the usefulness of the hydrologic model developed in this study. Our results indicate that the use of the censored error model provides more reliable results, although the two models considered in this study perform reliable results. In addition, the Gaussian model delivers many negative flow values, suggesting that it occasionally offers unrealistic estimations in hydrologic modeling. In an in-depth analysis, we find that the efficiency of the censored error model may increase as the frequency of zero flow increases. Finally, we discuss the importance of utilizing the censored error model when the hydrologic model is applied for ephemeral catchments in South Korea.

Application of WEP Model to the Cheonggyecheon Watershed (청계천 유역에 대한 WEP 모형의 적용)

  • Noh, Seong-Jin;Kim, Hyeon-Jun;Jang, Cheol-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.645-653
    • /
    • 2005
  • Water cycle analysis in the Cheonggyecheon watershed(river length: 13.75 km, area: $50.96\;km^2$) was performed using WEP model, a physically based distributed rainfall-runoff model. As the application results of the model, the hydrological characteristics of the Cheonggyecheon watershed are significantly consistent with those of a typical urbanized watershed. The direct runoff from the watershed was larger and the evapotranspiration. was lower, and the response of runoff to rainfall was occurred very fast, as compared to forest watersheds. The river channel routing simulation results are similar to the change pattern and scale of the field data. The possible supply period of instream flow from Cheonggyecheoon watershed itself was estimated using WEP. According to the WEP simulation results for the annual water balance of the Cheonggyecheon watershed in 2002, the amount of direct runoff, infiltration and evapotranspiration were 830 mm, 388 mm and 397 mm respectively for an annual precipitation of 1,388 mm. The runoff to rivers was 1,288 mm. And the proportion of direct runoff, intermediate runoff and groundwater runoff were $67.6\%,\;12.7\%$ and $19.7\%$ respectively.

Influence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling (수치고도모델의 격자크기와 유수흐름 알고리듬의 선택이 토양경관 모델링에 미치는 영향)

  • Park, S.J.;Ruecker, G.R.;Agyare, W.A.;Akramhanov, A.;Kim, D.;Vlek, P.L.G.
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.2
    • /
    • pp.122-145
    • /
    • 2009
  • Terrain parameters calculated from digital elevation models (DEM) have become increasingly important in current spatially distributed models of earth surface processes. This paper investigated how the ability of upslope area for predicting the spatial distribution of soil properties varies depending on the selection of spatial resolutions of DEM and algorithms. Four soil attributes from eight soil-terrain data sets collected from different environments were used. Five different methods of calculating upslope area were first compared for their dependency on different grid sizes of DEM. Multiple flow algorithms produced the highest correlation coefficients for most soil attributes and the lowest variations amongst different DEM resolutions and soil attributes. The high correlation coefficient remained unchanged at resolutions from 15 m to 50 m. Considering decreasing topographical details with increasing grid size, we suggest that the size of 15-30 m may be most suitable for soil-landscape analysis purposes in our study areas.

An Hybrid Clustering Using Meta-Data Scheme in Ubiquitous Sensor Network (유비쿼터스 센서 네트워크에서 메타 데이터 구조를 이용한 하이브리드 클러스터링)

  • Nam, Do-Hyun;Min, Hong-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.313-320
    • /
    • 2008
  • The dynamic clustering technique has some problems regarding energy consumption. In the cluster configuration aspect the cluster structure must be modified every time the head nodes are re-selected resulting in high energy consumption. Also, there is excessive energy consumption when a cluster head node receives identical data from adjacent cluster sources nodes. This paper proposes a solution to the problems described above from the energy efficiency perspective. The round-robin cluster header(RRCH) technique, which fixes the initially structured cluster and sequentially selects duster head nodes, is suggested for solving the energy consumption problem regarding repetitive cluster construction. Furthermore, the issue of redundant data occurring at the cluster head node is dealt with by broadcasting metadata of the initially received data to prevent reception by a sensor node with identical data. A simulation experiment was performed to verify the validity of the proposed approach. The results of the simulation experiments were compared with the performances of two of the must widely used conventional techniques, the LEACH(Low Energy Adaptive Clustering Hierarchy) and HEED(Hybrid, Energy Efficient Distributed Clustering) algorithms, based on energy consumption, remaining energy for each node and uniform distribution. The evaluation confirmed that in terms of energy consumption, the technique proposed in this paper was 29.3% and 21.2% more efficient than LEACH and HEED, respectively.

  • PDF

A Scheme for Load Distribution and Macro Mobility in Hierarchical Mobile IPv6 (HMIPv6에서 부하분산 및 매크로 이동성 지원 방안)

  • Seo, Jae-Kwon;Lee, Kyung-Geun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.49-58
    • /
    • 2007
  • Hierarchical Mobile IPv6 (HMIPv6) has been proposed by Internet Engineering Task Force (IETF) to compensate for such problems as handover latency and signaling overhead in employing Mobile IPv6 (MIPv6). HMIPv6 supports micro-mobility within a domain and introduces a new entity, namely mobility anchor point (MAP) as a local home agent. However, HMIPv6 causes load concentration at a particular MAP and longer handover latency when inter-domain handover occurs. In order to solve such problems, this paper establishes a virtual domain (VD) of a higher layer MAP and proposes a MAP changing algorithm in which the routing path changes between mobile node (MN) and correspondent node(CN) according to the mobile position and the direction of the MN before inter-domain handover occurs. The proposed algorithm not only enables complete handover binding-update of the on-link care of address (LCoA) only when inter-domain handover occurs, but concentrated load of a particular MAP is distributed as well. This is because the MNs registered with higher layer MAP and lower layer MAP coexist in the VD. We simulate the performance of the proposed algorithm and compare with HMIPv6.

Evaluation of the Application on Distributed Inundation Routing Model (SIMOD) Using MDM and FWA Method (다중흐름방향법과 평수가정법을 이용한 분포형 침수추적모형(SIMOD)의 적용성 평가)

  • Kim, Jin Hyuck;Lee, Suk Ho;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.261-268
    • /
    • 2018
  • The study used the simplified flooding analysis model, SIMOD, to distribute the total flood discharge by time, so research on flooding in urban areas can be conducted. The conventional flooding analysis models have limitations in constructing input data and take a long time for analysis. However, SIMOD is useful because it supports rapid decision-making process using quick modeling based on simple hydrological data, such as topography and inflow flood of the study area, to analyze submerged routes formed by flooding. Therefore, the study used the SIMOD model to analyze flooding in urban areas before conducting a comparative study with the outputs from FLO-2D, which is one of the conventional flooding analysis models, to identify the model's applicability. Seongseoje was selected as the study area, as it is located downstream the Geumho river where streams flow in the adjacent areas, and dikes are high enough to apply the "Overflow and Break" scenario for urban areas. With regard to topography, the study applied DEM data for the conventional flooding analysis and DSM data to represent urban building communities, distribution of roads, etc. Input flood discharge was calculated by applying the rectangular weir equation under the bank and break scenario through a 200-year return period of a design flood level. Comparative analysis was conducted in a flooded area with a simulation time of 1-24 hours. The time for the 24-hour simulation in SIMOD was less than 7 minutes. Compared with FLO-2D, the difference in flooded areas was less than 20%. Furthermore, the study identified the need for topography data using DSM for urban areas, as the analysis result that applies DSM showed the influence of roads and buildings.

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

On Generating Backbone Based on Energy and Connectivity for WSNs (무선 센서네트워크에서 노드의 에너지와 연결성을 고려한 클러스터 기반의 백본 생성 알고리즘)

  • Shin, In-Young;Kim, Moon-Seong;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.41-47
    • /
    • 2009
  • Routing through a backbone, which is responsible for performing and managing multipoint communication, reduces the communication overhead and overall energy consumption in wireless sensor networks. However, the backbone nodes will need extra functionality and therefore consume more energy compared to the other nodes. The power consumption imbalance among sensor nodes may cause a network partition and failures where the transmission from some sensors to the sink node could be blocked. Hence optimal construction of the backbone is one of the pivotal problems in sensor network applications and can drastically affect the network's communication energy dissipation. In this paper a distributed algorithm is proposed to generate backbone trees through robust multi-hop clusters in wireless sensor networks. The main objective is to form a properly designed backbone through multi-hop clusters by considering energy level and degree of each node. Our improved cluster head selection method ensures that energy is consumed evenly among the nodes in the network, thereby increasing the network lifetime. Comprehensive computer simulations have indicated that the newly proposed scheme gives approximately 10.36% and 24.05% improvements in the performances related to the residual energy level and the degree of the cluster heads respectively and also prolongs the network lifetime.

  • PDF

Application of the weather radar-based quantitative precipitation estimations for flood runoff simulation in a dam watershed (기상레이더 강수량 추정 값의 댐 유역 홍수 유출모의 적용)

  • Cho, Yonghyun;Woo, Sumin;Noh, Joonwoo;Lee, Eulrae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • In this study, we applied the Radar-AWS Rainrates (RAR), weather radar-based quantitative precipitation estimations (QPEs), to the Yongdam study watershed in order to perform the flood runoff simulation and calculate the inflow of the dam during flood events using hydrologic model. Since the Yongdam study watershed is a representative area of the mountainous terrain in South Korea and has a relatively large number of monitoring stations (water level/flow) and data compared to other dam watershed, an accurate analysis of the time and space variability of radar rainfall in the mountainous dam watershed can be examined in the flood modeling. HEC-HMS, which is a relatively simple model for adopting spatially distributed rainfall, was applied to the hydrological simulations using HEC-GeoHMS and ModClark method with a total of eight independent flood events that occurred during the last five years (2014 to 2018). In addition, two NCL and Python script programs are developed to process the radar-based precipitation data for the use of hydrological modeling. The results demonstrate that the RAR QPEs shows rather underestimate trends in larger values for validation against gauged observations (R2 0.86), but is an adequate input to apply flood runoff simulation efficiently for a dam watershed, showing relatively good model performance (ENS 0.86, R2 0.87, and PBIAS 7.49%) with less requirements for the calibration of transform and routing parameters than the spatially averaged model simulations in HEC-HMS.