• Title/Summary/Keyword: Distributed routing

Search Result 313, Processing Time 0.027 seconds

Evaluation of low streamflow via distributed hydrological watershed modelling considering reservoir-weir releases and streamflow routing in Geum river basin (댐-보 연계방류를 고려한 분포형 유역수문 모델링을 통한 금강유역의 하천갈수 평가기법 개발)

  • Lee, Yonggwan;Kim, Wonjin;Jung, Chunggil;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.103-103
    • /
    • 2020
  • Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WFT)은 하천건천화 평가 및 예측을 위해 개발된 물수지 기반의 분포형 수문모형이다. 그러나 물수지 모형의 특성상 토양층 사이를 이동하는 수직적인 물의 거동은 파악하기 용이하나, 하천 및 지표를 따라 이동하는 물의 수평적인 거동 추적에는 한계가 있다. 본 연구에서는 DrySAT-WFT 모형에 댐·보 방류량을 고려한 하도 갈수량 추적 알고리즘을 적용하여 유출 모의 성능을 개선하고, 개선된 유출 모형을 금강 유역(9,915.5 ㎢)에 적용하여 건천화 원인 추적 및 평가를 수행하였다. 하천건천화 원인 추적을 위한 영향요소로 1976년부터 2015년까지 구축한 산림높이, 도로망, 지하수 이용량, 토지이용, 토심, 기상 자료를 활용하였다. 건천화 영향요소를 적용하기 전 기상자료만을 활용해 모의한 유출결과를 기준 시나리오로 설정하고 댐·보 지점을 대상으로 검보정을 진행하였다. 이후 각 건천화 영향요소를 적용한 유출 시나리오별 유량의 감소 비율과 건천화 기여 비율을 산정하여 영향평가를 수행하였다.

  • PDF

A Study on clustering method for Banlancing Energy Consumption in Hierarchical Sensor Network (계층적 센서 네트워크에서 균등한 에너지 소비를 위한 클러스터링 기법에 관한 연구)

  • Kim, Yo-Sup;Hong, Yeong-Pyo;Cho, Young-Il;Kim, Jin-Su;Eun, Jong-Won;Lee, Jong-Yong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3472-3480
    • /
    • 2010
  • The Clustering technology of Energy efficiency wireless sensor network gets the energy efficiency by reducing the number of communication between sensor nodes and sink node. In this paper, First analyzed on the clustering technique of the distributed clustering protocol routing scheme LEACH (Low Energy Adaptive Clustering Hierarchy) and HEED (Hybrid, Energy-Efficient Distributed Clustering Approach), and based on this, new energy-efficient clustering technique is proposed for the cause the maximum delay of dead nodes and to increase the lifetime of the network. In the proposed method, the cluster head is elect the optimal efficiency node based on the residual energy information of each member node and located information between sink node and cluster node, and elected a node in the cluster head since the data transfer process from the data been sent to the sink node to form a network by sending the energy consumption of individual nodes evenly to increase the network's entire life is the purpose of this study. To verify the performance of the proposed method through simulation and compared with existing clustering techniques. As a result, compared to the existing method of the network life cycle is approximately 5-10% improvement could be confirmed.

R-Tree Construction for The Content Based Publish/Subscribe Service in Peer-to-peer Networks (피어투피어 네트워크에서의 컨텐츠 기반 publish/subscribe 서비스를 위한 R-tree구성)

  • Kim, Yong-Hyuck;Kim, Young-Han;Kang, Nam-Hi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.1-11
    • /
    • 2009
  • A content based pub/sub (Publish/subscribe) services at the peer-to-peer network has the requirements about how to distribute contents information of subscriber and to delivery the events efficiently. For satisfying the requirements, a DHT(Distributed Hash Table) based pub/sub overlay networking and tree type topology based network construction using filter technique have been proposed. The DHT based technique is suitable for topic based pub/sub service but it's not good contents based service that has the variable requirements. And also filter based tree topology networking is not efficient at the environment where the user requirements are distributed. In this paper we propose the R-Tree algorithm based pub/sub overlay network construction method. The proposed scheme provides cost effective event delivery method by mapping user requirement to multi-dimension and hierarchical grouping of the requirements. It is verified by simulation at the variable environment of user requirements and events.

K-connected, (K+1)-covered Fault-tolerant Topology Control Protocol for Wireless Sensor Network (무선 센서 망을 위한 K-연결 (K+1)-감지도 고장 감내 위상 제어 프로토콜)

  • Park, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1133-1141
    • /
    • 2009
  • In this paper, we present a distributed fault-tolerant topology control protocol that configure a wireless sensor network to achieve k-connectivity and (k+1)-coverage. One fundamental issue in sensor networks is to maintain both sensing coverage and network connectivity in order to support different applications and environments, while some least active nodes are on duty. Topology control algorithms have been proposed to maintain network connectivity while improving energy efficiency and increasing network capacity. However, by reducing the number of links in the network, topology control algorithms actually decrease the degree of routing redundancy. Although the protocols for resolving such a problem while maintaining sensing coverage were proposed, they requires accurate location information to check the coverage, and most of active sensors in the constructed topology maintain 2k-connectivity when they keep k-coverage. We propose the fault-tolerant topology control protocol that is based on the theorem that k-connectivity implies (k+1)-coverage when the sensing range is at two times the transmission range. The proposed distributed algorithm does not need accurate location information, the complexity is O(1). We demonstrate the capability of the proposed protocol to provide guaranteed connectivity and coverage, through both geometric analysis and extensive simulation.

Development of Distributed Ecohydrologic Model and Its Application to the Naeseong Creek Basin (분포형 생태수문모형 개발 및 내성천 유역에의 적용)

  • Choi, Daegyu;Kim, In-Hwan;Kim, Jeongsook;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1053-1067
    • /
    • 2013
  • Distributed ecohydrological model which can simulate hydrological components, vegetation and landsurface temperature using practically available input and observed data with minimum parameters is introduced. This model is designed to properly simulate in area with lack of observed data. Parameter estimation and calibration of the model can be carried out with indirectly estimated data (monthly surface runoff by NRCS-CN method and annual actual vaporization by empirical equation) and remote sensing data (NDVI, LST) instead of observed data. We applied this model in the Naeseong creek basin to evaluate the model validity. Firstly, we found the sensitive parameters which largely influence the simulation results by sensitivity analysis, and then hydrological components, vegetation, land-surface temperature, routed streamflow and water temperature were simulated over 10 years (2001 to 2010) using calibrated parameters. Parameters are estimated by optimization method. It is shown that most of grids are well simulated. In the case of streamflow and water temperature, we checked two observed points in the outlet of watershed and it is shown that streamflow and water temperature are properly simulated as well. Hence, it can be shown that this model properly simulate the hydrological components, vegetation, land-surface temperature, routed streamflow and water temperature as well, even though in despite of using limited input data and minimum parameters.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

Modeling End-to-End Throughput of Multiple Flows and Efficient Route Selection in Wireless Mesh Networks (무선 메쉬 네트워크에서의 다중 트래픽 흐름을 위한 종단간 처리량 모델링 및 효율적인 라우팅 경로 선택 기법)

  • Wang, Xiaofei;Kwon, Ted Tae-Kyoung;Choi, Yang-Hee
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.272-283
    • /
    • 2010
  • Wireless Mesh Networks (WMNs) have gained a lot of attention recently. Based on the characteristic of WMNs as a highly connected wireless infrastructure, many efforts from research organizations are made in order to improve the performance of the flow throughput in WMNs. Therefore, it is very critical issue to establish efficient routing paths for multiple concurrent ongoing flows. In this paper, we propose a general modeling methodology to analyze the end-to-end throughput of multiple concurrent flows by analytical calculation taking into account the carrier sensing behaviors, interference and the IEEE 802.11 Distributed Coordination Function mechanism. After the comparison of the average service time for each successful transmission at each node, we analyze the bottlenecks of flows, and hence obtain the maximum end-to-end throughput of them. By using our proposed model, it is possible to predicate the throughput of several candidate routing paths for multiple concurrent ongoing data flows, so we can select the most efficient route that can achieve the highest throughput. We carry out simulations with various traffic patterns of multiple flows in WMNs to validate our modeling and our efficient route selection mechanism.

Routing of Groundwater Component in Open Channel (Saint-Venant 공식(公式)에 의한 개수로(開水路)의 지하수성분(地下水性分) 추적(追跡))

  • Kim, Jae Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.23-32
    • /
    • 1988
  • The rates of infiltration contributed to the flow fo water in an unconfined aquifer under the partially penetrated stream at an ungaged station and the corresponding base flow in channel are coupled by using the hydraulic and/or hydrologic characteristics obtained from the geomorphologic and soil maps. For the determination of groundwater flow, the linearized model which is originally Boussinesq's nonlinear equation is applied in this study. Also, a stream flow routing model for base flow in channel is based on a simplification of the Saint-venant. The distributed runoff model with piecewise spatial uniformity is presented for obtaining its solution based on a finite difference technique of the kinematic wave equations. The method developed in this study was tested to the Bocheong watershed(area : $475.5km^2$) of the natural stream basin which is one of tributaries in Geum River basin in Korea. As a result, it is suggested that the rationality of hydro-graph separation according to a wide variability in hydrogeologic properties be worked out as developing the physically based subsurface model. The results of the present model are shown to be possible to simulate a base flow due to an arbitrary rate of infiltration for ungaged basins.

  • PDF

The Asymptotic Throughput and Connectivity of Cognitive Radio Networks with Directional Transmission

  • Wei, Zhiqing;Feng, Zhiyong;Zhang, Qixun;Li, Wei;Gulliver, T. Aaron
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.227-237
    • /
    • 2014
  • Throughput scaling laws for two coexisting ad hoc networks with m primary users (PUs) and n secondary users (SUs) randomly distributed in an unit area have been widely studied. Early work showed that the secondary network performs as well as stand-alone networks, namely, the per-node throughput of the secondary networks is ${\Theta}(1/\sqrt{n{\log}n})$. In this paper, we show that by exploiting directional spectrum opportunities in secondary network, the throughput of secondary network can be improved. If the beamwidth of secondary transmitter (TX)'s main lobe is ${\delta}=o(1/{\log}n)$, SUs can achieve a per-node throughput of ${\Theta}(1/\sqrt{n{\log}n})$ for directional transmission and omni reception (DTOR), which is ${\Theta}({\log}n)$ times higher than the throughput with-out directional transmission. On the contrary, if ${\delta}={\omega}(1/{\log}n)$, the throughput gain of SUs is $2{\pi}/{\delta}$ for DTOR compared with the throughput without directional antennas. Similarly, we have derived the throughput for other cases of directional transmission. The connectivity is another critical metric to evaluate the performance of random ad hoc networks. The relation between the number of SUs n and the number of PUs m is assumed to be $n=m^{\beta}$. We show that with the HDP-VDP routing scheme, which is widely employed in the analysis of throughput scaling laws of ad hoc networks, the connectivity of a single SU can be guaranteed when ${\beta}$ > 1, and the connectivity of a single secondary path can be guaranteed when ${\beta}$ > 2. While circumventing routing can improve the connectivity of cognitive radio ad hoc network, we verify that the connectivity of a single SU as well as a single secondary path can be guaranteed when ${\beta}$ > 1. Thus, to achieve the connectivity of secondary networks, the density of SUs should be (asymptotically) bigger than that of PUs.

Development of Hydrologic Simulation Model to Predict Flood Runoff in a Small Mountaineous Watershed (산지 소유역의 홍수유출 예측을 위한 모의발생 수문모형의 개발)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.58-68
    • /
    • 1988
  • Most of the Korean watersheds are mountaineous and consist of various soil types and land uses And seldom watersheds are found to have long term hydrologic records. The SNUA, a hydrologic watershed model was developed to meet the unique characteristics of Korean watershed and simulate the storm hydrographs from a small mountaineous watershed. Also the applicability of the model was tested by comparing the simulated storm hydrographs and the observed from Dochuk watershed, Gwangjugun, Kyunggido The conclusions obtained in this study could be summarized as follows ; 1. The model includes the simulation of interception, evaporation and infiltration for land surface hydrologic cycle on the single storm basis and the flow routing features for both overland and channel systems. 2. Net rainfall is estimated from the continuous computation of water balance at the surface of interception storage accounting for the rainfall intensities and the evaporation losses at each time step. 3. Excess rainfall is calculated by the abstraction of infiltration loss estimated by the Green and Ainpt Model from the net rainfall. 4. A momentum equation in the form of kinematic wave representation is solved by the finite differential method to obtain the runoff rate at the exit of the watershed. 5. The developed SNUA Model is a type of distributed and event model that considers the spatial distribution of the watershed parameters and simulates the hydrograph on a single storm basis. 6. The results of verification test show that the simulated peak flows agree with the observed in the occurence time but have relative enors in the range of 5.4-40.6% in various flow rates and also show that the simulated total runoff have 6.9-32% of relative errors against the observed. 7. To improve the applicability of the model, it was thought that more studies like the application test to the other watersheds of various types or the addition of the other hydrologk components describing subsurface storages are needed.

  • PDF