• Title/Summary/Keyword: Distributed robust control

Search Result 66, Processing Time 0.029 seconds

DISTRIBUTED ROBUST CONTROL OF KELLER-SEGEL EQUATIONS

  • RYU, SANG-UK;YUN, YONG-SIK
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.423-439
    • /
    • 2004
  • We are concerned with the robust control problem for the Keller-Segel equations with the distributed control and disturbance. We consider the present problem as a differential game finding the best control which takes into account the worst disturbance. We prove the existence of solutions and the optimality conditions to a corresponding problem.

  • PDF

Robust Feedback Control Design for a Three-phase Grid-connected Inverter in Distributed Generation System

  • Lai, Ngoc Bao;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.491-492
    • /
    • 2016
  • This paper presents a robust feedback control design to mitigate the effect of grid voltage disturbances for three-phase grid-connected inverters in distributed generation systems. The proposed strategy consists of two major design steps. First, the controller is synthesized using the internal model principle to achieve a good reference tracking and disturbance rejection performance. Then, the feedback gain is systematically obtained by solving the linear matrix inequality conditions which are directly derived from the stability criteria. The main contribution of this paper is that the complexity of control structure can be substantially reduced and transient response is improved as compared with the existing robust control design methods. The simulation results are given to prove the validity of the proposed control scheme.

  • PDF

Vibration Control of a Intelligent Cantilevered Beam with a Distributed PVDF Sensor and PZT Actuator

  • Yun, Yeo-Hung;Kwon, Tae-Kyu;Lee, Seong-Cheol;Yu, Kee-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.22.5-22
    • /
    • 2001
  • Robust control of a GFR composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented En this paper. Modal analysis method and modal coordinates are introduced to obtain the state educations of the structural system. 1st and 2nd natural frequencies are considered In the modeling, because robust control theory which is robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$\^$$\infty$/ theory do not satisfy control performance, it is improved by ${\mu}$-synthesis method with D-K Iteration so that the ${\mu}$-controller based on the structured singular value satisfies the nominal performance and robust performance.

  • PDF

Robust Control of a Glass Fiber Composite Beam using $\mu$-Synthesis Algorithm

  • Lee, Seong-cheol;Kwon, Tae-Kyu;Yun, Yeo-Hung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. $1^{st}$ and $2^{nd}$ natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by $H_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

Delay-Dependent Guaranteed Cost Control for Uncertain Neutral Systems with Distributed Delays

  • Li, Yongmin;Xu, Shengyuan;Zhang, Baoyong;Chu, Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • This paper considers the problem of delay-dependent guaranteed cost controller design for uncertain neutral systems with distributed delays. The system under consideration is subject to norm-bounded time-varying parametric uncertainty appearing in all the matrices of the state-space model. By constructing appropriate Lyapunov functionals and using matrix inequality techniques, a state feedback controller is designed such that the resulting closed-loop system is not only robustly stable but also guarantees an adequate level of performance for all admissible uncertainties. Furthermore, a convex optimization problem is introduced to minimize a specified cost bound. By matrix transformation techniques, the corresponding optimal guaranteed controller can be obtained by solving a linear matrix inequality. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed approach.

Robust $H_{\infty}$ Power Control for CDMA Systems in User-Centric and Network-Centric Manners

  • Zhao, Nan;Wu, Zhilu;Zhao, Yaqin;Quan, Taifan
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.399-407
    • /
    • 2009
  • In this paper, we present a robust $H_{\infty}$ distributed power control scheme for wireless CDMA communication systems. The proposed scheme is obtained by optimizing an objective function consisting of the user's performance degradation and the network interference, and it enables a user to address various user-centric and network-centric objectives by updating power in either a greedy or energy efficient manner. The control law is fully distributed in the sense that only its own channel variation needs to be estimated for each user. The proposed scheme is robust to channel fading due to the immediate decision of the power allocation of the next time step based on the estimations from the $H_{\infty}$ filter. Simulation results demonstrate the robustness of the scheme to the uncertainties of the channel and the excellent performance and versatility of the scheme with users adapting transmit power either in a user-centric or a network-centric efficient manner.

Robust Stability of TSK-type Time-Delay FLC (TSK-type 시간 지연 퍼지 제어기의 강인한 안정성)

  • 명환춘;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.4-7
    • /
    • 2001
  • A stable TSK-type FLC can be designed by the method of Parallel Distributed Compensation (PDC), but in this case, solving the LMI problem is not a trivial task. To overcome such a difficulty, a Time-Delay based FLC (TDFLC) is proposed. TSK-type TDFLC consists of Time-Delay Control (TDC) and Sliding Mode Control (SMC) schemes, which result in a robust controller basaed upon an integral sliding surface.

  • PDF

A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza;Lohmann Boris;Buskens Christof
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.170-183
    • /
    • 2007
  • This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

Robust Control of a Glass-Fiber Reinforced Composite Beam using $\mu$-Synthesis Algorithm

  • Yun, Yeo-Hung;Lee, Young-Choon;Kwon, Tae-Kyu;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.498-498
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF