• 제목/요약/키워드: Distributed dynamic stiffness

검색결과 43건 처리시간 0.023초

FRF를 이용한 동적 구조 시스템의 구조추정 및 재해석 (Reanalysis for Correlating and Updating Dynamic Systems Using Frequency Response Functions)

  • 한경봉;박선규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.49-56
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrected noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. One simulated system is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise Is also addressed.

  • PDF

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

검지의 효율적 화면접촉감응을 위한 압전-구조물계의 동적설계 (Dynamic design of piezoelectric structures for an efficient tactile feedback of index finger on touch screen)

  • 박영민;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.280-281
    • /
    • 2009
  • Piezoelectric vibrators can be good replacements of electric motors to excite touch screen of a mobile device owing to small volume and low power consumption. One problem to be solved yet for real application is larger excitation force or moment than available currently. More efficient excitation by a piezoelectric vibrator could be achieved by operating at one of resonance frequencies of the system, which must also be as close as possible to frequency range where index finger is most sensitive and increasing transmission force or moment at that frequency. In this study, dynamic models are derived for the piezoelectric exciter and an adhesive viscoelastic layer, which connect the exciter to the screen. The adhesive layer is modeled as distributed stiffness by considering its geometric shape to relative to the piezoelectric exciter. Then, equations of motion for the piezoelectric exciter and the adhesive layer are derived using Hamilton's principle. Based on this model, dynamic characteristics of the exciter will be designed to maximize the force or moment transmitted onto the screen structure.

  • PDF

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

The Short Term Effects of Ankle Strengthening Emphasis with Jumping on Strength, Mechanical Properties, and Balance with and without Wearing High Heel in Ankle Instability

  • Shin, YeJi;Yoon, TaeLim
    • The Journal of Korean Physical Therapy
    • /
    • 제31권4호
    • /
    • pp.176-183
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the short term effects of ASEJ (ankle strengthening with emphasis on jumping) for 3weeks on strength, mechanical properties, and balance and to compare the balance with and without HH(high-heel) condition. Methods: ASEJ (a combined exercise of squat, heel raise up, and jumping) were performed for the subjects in 11 female ankle instability young females ($21.7{\pm}2.0yrs$ Cumberland ankle instability score $19{\pm}6.5$). To investigate the effect of ASEJ, investigator used dynamometer for measuring strength, MyotonPRO for measuring mechanical properties(tone, stiffness, and elasticity of the muscles), I-Balance test for static balance, and Y-balance test for dynamic balance between the condition with and without HH condition. All data were normally distributed and analyzed using the SPSS 22.0 statistical program. Comparing pre- and post-intervention and the condition with and without HH conditions data were examined using the paired t-test. The level of significance was chosen as 0.05 for all the analyses. Results: 3wks of ASEJ would strengthen leg muscles and increasing muscle tone and stiffness in most muscles however there was decreasing muscle elasticity of gastrocnemious. In addition, the ASEJ improves the static balance for ankle instability young females and increases the dynamic balance when wearing the heels especially. Conclusions: the ASEJ could recommend to improve the strength and balance for ankle instability young females. Also, measuring the balance with HH conditions well represents the risk of ankle damage in female.

곡률을 가진 적층복합재 구조에서의 저속충격손상 평가 (Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact)

  • 전정규;권오양
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.69-73
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact force is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. The distribution of delamination along the thickness direction of curved laminates are also different from that of flat plates. Delamination was distributed rather even]y at each interface along the thickness direction of curved laminates. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF

전달함수를 이용한 동흡진기 설계에 대한 연구(I) (The Study of DVA used to Transfer Function (I))

  • 최정현;임병덕
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1457-1462
    • /
    • 2003
  • The problem of reducing the level of vibrations in structures arises in various branches of technology. For the calculation of systems equipped with DVAs, the frequencies of the protected system's free vibrations are determined first. In most practical problems system have to be considered continuous systems. It is important to obtain the detailed information about not the first frequency and the mode but anothers corresponding to it. So, this paper describes the method to obtain the accurate information about the combined discrete system. This information is obtained from the combined system's receptance. This paper shows the convenience when design the dynamic vibration absorber with the combined system's receptance.

10 kWh급 초전도 베어링 회전자의 기계적 특성 평가 (Mechanical Properties of a High-temperature Superconductor Bearing Rotor in a 10 kWh Class Superconductor Flywheel Energy Storage System)

  • 박병준;정세용;김철희;한상철;박병철;한상진;두승규;한영희
    • Progress in Superconductivity
    • /
    • 제13권1호
    • /
    • pp.58-63
    • /
    • 2011
  • Recently, superconductor flywheel energy storage systems (SFESs) have been developed for application to a regenerative power of train, a power quality improvement, the storage of distributed power sources such as solar and wind power, and a load leveling. As the high temperature superconductor (HTS) bearings offer dynamic stability without the use of active control, accurate analysis of the HTS bearing is very important for application to SFESs. Mechanical property of a HTS bearing is the main index for evaluating the capacity of an HTS bearing and is determined by the interaction between the HTS bulks and the permanent magnet (PM) rotor. HTS bearing rotor consists of PM and iron collector and the proper dimension design of them is very important to determine a supporting characteristics. In this study, we have optimized a rotor magnet array, which depends on the limited bulk size and performed various dimension layouts for thickness of the pole pitch and iron collector. HTS bearing rotor was installed into a single axis universal test machine for a stiffness test. A hydraulic pump was used to control the amplitude and frequency of the rotor vibration. As a result, the stiffness result showed a large difference more than 30 % according to the thickness of permanent magnet and iron collector. This is closely related to the bulk stiffness controlled by flux pining area, which is limited by the total bulk dimension. Finally, the optimized HTS bearing rotor was installed into a flywheel system for a dynamic stability test. We discussed the dynamic properties of the superconductor bearing rotor and these results can be used for the optimal design of HTS bearings of the 10kWh SFESs.

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.