• 제목/요약/키워드: Distributed Speech Recognition

검색결과 37건 처리시간 0.025초

멀티밴드 스펙트럼 차감법과 엔트로피 하모닉을 이용한 잡음환경에 강인한 분산음성인식 (Robust Distributed Speech Recognition under noise environment using MESS and EH-VAD)

  • 최갑근;김순협
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.101-107
    • /
    • 2011
  • 음성인식의 실용화에 가장 저해되는 요소는 배경잡음과 채널에 의한 왜곡이다. 일반적으로 잡음은 음성인식 시스템의 성능을 저하시키고 이로 인해 사용 장소의 제약을 많이 받고 있다. DSR(Distributed Speech Recognition) 기반의 음성인식 역시 이 같은 문제로 성능 향상에 어려움을 겪고 있다. 이 논문은 잡음환경에서 DSR기반의 음성인식률 향상을 위해 정확한 음성구간을 검출하고, 잡음을 제거하여 잡음에 강인한 특징추출을 하도록 설계하였다. 제안된 방법은 엔트로피와 음성의 하모닉을 이용해 음성구간을 검출하며 멀티밴드 스펙트럼 차감법을 이용하여 잡음을 제거한다. 음성의 스펙트럼 에너지에 대한 엔트로피를 사용하여 음성검출을 하게 되면 비교적 높은 SNR 환경 (SNR 15dB) 에서는 성능이 우수하나 잡음환경의 변화에 따라 음성과 비음성의 문턱 값이 변화하여 낮은 SNR환경(SNR 0dB)에시는 정확한 음성 검출이 어렵다. 이 논문은 낮은 SNR 환경(0dB)에서도 정확한 음성을 검출할 수 있도록 음성의 스펙트럴 엔트로피와 하모닉 성분을 이용하였으며 정확한 음성 구간 검출에 따라 잡음을 제거하여 잡음에 강인한 특정을 추출하도록 하였다. 실험결과 잡음환경에 따른 인식조건에서 개선된 인식성능을 보였다.

Applying Mobile Agent for Internet-based Distributed Speech Recognition

  • Saaim, Emrul Hamide Md;Alias, Mohamad Ashari;Ahmad, Abdul Manan;Ahmad, Jamal Nasir
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.134-138
    • /
    • 2005
  • There are several application have been developed on internet-based speech recognition. Internet-based speech recognition is a distributed application and there were various techniques and methods have been using for that purposed. Currently, client-server paradigm was one of the popular technique that been using for client-server communication in web application. However, there is a new paradigm with the same purpose: mobile agent technology. Mobile agent technology has several advantages working on distributed internet-based system. This paper presents, applying mobile agent technology in internet-based speech recognition which based on client-server processing architecture.

  • PDF

분산 음성인식 시스템의 성능향상을 위한 음소 빈도 비율에 기반한 VQ 코드북 설계 (A VQ Codebook Design Based on Phonetic Distribution for Distributed Speech Recognition)

  • 오유리;윤재삼;이길호;김홍국;류창선;구명완
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2006년도 춘계 학술대회 발표논문집
    • /
    • pp.37-40
    • /
    • 2006
  • In this paper, we propose a VQ codebook design of speech recognition feature parameters in order to improve the performance of a distributed speech recognition system. For the context-dependent HMMs, a VQ codebook should be correlated with phonetic distributions in the training data for HMMs. Thus, we focus on a selection method of training data based on phonetic distribution instead of using all the training data for an efficient VQ codebook design. From the speech recognition experiments using the Aurora 4 database, the distributed speech recognition system employing a VQ codebook designed by the proposed method reduced the word error rate (WER) by 10% when compared with that using a VQ codebook trained with the whole training data.

  • PDF

무선랜 환경에서의 분산 음성 인식을 이용한 음성 다이얼링 시스템 (A Voice-Activated Dialing System with Distributed Speech Recognition in WiFi Environments)

  • 박성준;구명완
    • 대한음성학회지:말소리
    • /
    • 제56호
    • /
    • pp.135-145
    • /
    • 2005
  • In this paper, a WiFi phone system with distributed speech recognition is implemented. The WiFi phone with voice-activated dialing and its functions are explained. Features of the input speech are extracted and are sent to the interactive voice response (IVR) server according to the real-time transport protocol (RTP). Feature extraction is based on the European Telecommunication Standards Institute (ETSI) standard front-end, but is modified to reduce the processing time. The time for front-end processing on a WiFi phone is compared with that in a PC.

  • PDF

분산음성인식 환경에서 서버에서의 스케일러블 고품질 음성복원 (Scalable High-quality Speech Reconstruction in Distributed Speech Recognition Environments)

  • 윤재삼;김홍국;강병옥
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.423-424
    • /
    • 2007
  • In this paper, we propose a scalable high-quality speech reconstruction method for distributed speech recognition (DSR). It is difficult to reconstruct speech of high quality with MFCCs at the DSR server. Depending on the bit-rate available by the DSR system, we can send additional information associated with speech coding to the DSR sorrel, where the bit-rate is variable from 4.8 kbit/s to 11.4 kbit/s. The experimental results show that the speech quality reproduced by the proposed method when the bit-rate is 11.4 kbit/s is comparable with that of ITU-T G.729 under both ideal channel and frame error channel conditions while the performance of DSR is maintained to that of wireline speech recognition.

  • PDF

분산 메모리 다중프로세서 환경에서의 병렬 음성인식 모델 (A Parallel Speech Recognition Model on Distributed Memory Multiprocessors)

  • 정상화;김형순;박민욱;황병한
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.44-51
    • /
    • 1999
  • 본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬계산모델을 제안한다. 음소모델은 연속 Hidden Markov Model(HMM)에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 지식베이스를 기반으로 한다. 또한 지식베이스를 구성하기 위해 계층구조의 semantic network과 병렬 marker-passing을 추론 메카니즘으로 쓰는 memory-based parsing 기술을 사용한다. 본 연구의 병렬 음성인식 알고리즘은 분산메모리 MIMD(Multiple Instruction Multiple Data) 구조의 다중 Transputer 시스템을 이용하여 구현되었다. 실험결과, 본 연구의 지식베이스 기반 음성인식 시스템의 인식률이 word network 기반 음성인식 시스템보다 높게 나타났으며 code-phoneme 통계정보를 활용하여 인식성능의 향상도 얻을 수 있었다. 또한, 성능향상도(speedup) 관련 실험들을 통하여 병렬 음성인식 시스템의 실시간 구현 가능성을 확인하였다.

  • PDF

순환 신경망 모델을 이용한 한국어 음소의 음성인식에 대한 연구 (A Study on the Speech Recognition of Korean Phonemes Using Recurrent Neural Network Models)

  • 김기석;황희영
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.782-791
    • /
    • 1991
  • In the fields of pattern recognition such as speech recognition, several new techniques using Artifical Neural network Models have been proposed and implemented. In particular, the Multilayer Perception Model has been shown to be effective in static speech pattern recognition. But speech has dynamic or temporal characteristics and the most important point in implementing speech recognition systems using Artificial Neural Network Models for continuous speech is the learning of dynamic characteristics and the distributed cues and contextual effects that result from temporal characteristics. But Recurrent Multilayer Perceptron Model is known to be able to learn sequence of pattern. In this paper, the results of applying the Recurrent Model which has possibilities of learning tedmporal characteristics of speech to phoneme recognition is presented. The test data consist of 144 Vowel+ Consonant + Vowel speech chains made up of 4 Korean monothongs and 9 Korean plosive consonants. The input parameters of Artificial Neural Network model used are the FFT coefficients, residual error and zero crossing rates. The Baseline model showed a recognition rate of 91% for volwels and 71% for plosive consonants of one male speaker. We obtained better recognition rates from various other experiments compared to the existing multilayer perceptron model, thus showed the recurrent model to be better suited to speech recognition. And the possibility of using Recurrent Models for speech recognition was experimented by changing the configuration of this baseline model.

잡음환경에서 음성인식 성능향상을 위한 바이너리 마스크를 이용한 스펙트럼 향상 방법 (Method for Spectral Enhancement by Binary Mask for Speech Recognition Enhancement Under Noise Environment)

  • 최갑근;김순협
    • 한국음향학회지
    • /
    • 제29권7호
    • /
    • pp.468-474
    • /
    • 2010
  • 음성인식의 실용화에 가장 저해되는 요소는 배경잡음과 채널잡음에 의한 왜곡이다. 일반적으로 배경잡음은 음성인식 시스템의 성능을 저하시키고 이로 인해 사용 장소의 제약을 받게 한다. DSR (Distributed Speech Recognition) 기반의 음성인식 역시 이와 같은 문제로 성능 향상에 어려움을 겪고 있다. 이러한 문제를 해결하기 위해 다양한 잡음제거 알고리듬이 사용되고 있으나 낮은 SNR환경에서 부정확한 잡음추정으로 발생하는 스펙트럼 손상과 잔존 잡음은 음성인식기의 인식환경과 학습 환경의 불일치를 만들게 되어 인식률을 저하시키는 원인이 된다. 본 논문에서는 이와 같은 문제를 해결하기 위해 잡음제거 알고리듬으로 MMSE-STSA 방법을 사용하였고 손상된 스펙트럼을 보상하기 위해 Ideal Binary Mask를 이용하였다. 잡음환경 (SNR 15 ~ 0 dB)에 따른 실험결과 제안된 방법을 사용했을 때 향상된 스펙트럼을 얻을 수 있었고 향상된 인식성능을 확인했다.

분산형 음성인식 DSP 네트워킹 시스템을 위한 반음소 모델기반의 신뢰도를 사용한 결정규칙과 인터럽트-폴링 (Decision Rule using Confidence Based Anti-phone Model and Interrupt-Polling Method for Distributed Speech Recognition DSP Networking System)

  • 송기창;강철호
    • 한국멀티미디어학회논문지
    • /
    • 제13권7호
    • /
    • pp.1016-1022
    • /
    • 2010
  • 지능형 홈네트워크의 복잡하고 다양한 서비스를 음성인식을 이용해 편리하게 제어하기 위해서는 원거리 음성인식 및 분산 음성인식 네트워킹에 관한 방법은 필수적 요소이다. 이를 통해 가정의 어느 공간에서든 음성을 이용한 홈컨트롤이 가능해 진다. 본 논문에서는 분산형 음성인식 DSP 시스템 구성을 위하여 서버-클라이언트 형태로 구분된 DSP 확장형 모듈을 개발하였으며, 클라이언트 모듈이 전달하는 인식 결과의 신뢰도를 통합 분석하여 서버 모듈이 지능적으로 인식 결과를 판단하는 기법을 제안한다. 모의 실험 결과, 제안한 판단 기법은 기존의 다수결의 법칙이나, 선도착 우선의 법칙보다 우수한 인식 성능을 나타내었다. 또한, 선도착 클라이언트 결과가 도착한 후 무조건 일정 시간 타 클라이언트 결과를 기다려야 하는 기존의 지연(Delay) 방식의 단점을 해결하기 위하여, 인터럽트 폴링 기법을 제안한다. 제안한 인터럽트 폴링 기법은 서버 모듈이 클라이언트 모듈에게 현재 상태를 물어보고 클라이언트의 결과를 기다려야 할지 선택함으로써 불필요한 인식 지연시간을 없애고 인식율의 성능을 유지할 수 있다.

가산잡음환경에서 강인음성인식을 위한 은닉 마르코프 모델 기반 손실 특징 복원 (HMM-based missing feature reconstruction for robust speech recognition in additive noise environments)

  • 조지원;박형민
    • 말소리와 음성과학
    • /
    • 제6권4호
    • /
    • pp.127-132
    • /
    • 2014
  • This paper describes a robust speech recognition technique by reconstructing spectral components mismatched with a training environment. Although the cluster-based reconstruction method can compensate the unreliable components from reliable components in the same spectral vector by assuming an independent, identically distributed Gaussian-mixture process of training spectral vectors, the presented method exploits the temporal dependency of speech to reconstruct the components by introducing a hidden-Markov-model prior which incorporates an internal state transition plausible for an observed spectral vector sequence. The experimental results indicate that the described method can provide temporally consistent reconstruction and further improve recognition performance on average compared to the conventional method.