• Title/Summary/Keyword: Distributed Speech Recognition

Search Result 37, Processing Time 0.03 seconds

Robust Distributed Speech Recognition under noise environment using MESS and EH-VAD (멀티밴드 스펙트럼 차감법과 엔트로피 하모닉을 이용한 잡음환경에 강인한 분산음성인식)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.101-107
    • /
    • 2011
  • The background noises and distortions by channel are major factors that disturb the practical use of speech recognition. Usually, noise reduce the performance of speech recognition system DSR(Distributed Speech Recognition) based speech recognition also bas difficulty of improving performance for this reason. Therefore, to improve DSR-based speech recognition under noisy environment, this paper proposes a method which detects accurate speech region to extract accurate features. The proposed method distinguish speech and noise by using entropy and detection of spectral energy of speech. The speech detection by the spectral energy of speech shows good performance under relatively high SNR(SNR 15dB). But when the noise environment varies, the threshold between speech and noise also varies, and speech detection performance reduces under low SNR(SNR 0dB) environment. The proposed method uses the spectral entropy and harmonics of speech for better speech detection. Also, the performance of AFE is increased by precise speech detections. According to the result of experiment, the proposed method shows better recognition performance under noise environment.

Applying Mobile Agent for Internet-based Distributed Speech Recognition

  • Saaim, Emrul Hamide Md;Alias, Mohamad Ashari;Ahmad, Abdul Manan;Ahmad, Jamal Nasir
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.134-138
    • /
    • 2005
  • There are several application have been developed on internet-based speech recognition. Internet-based speech recognition is a distributed application and there were various techniques and methods have been using for that purposed. Currently, client-server paradigm was one of the popular technique that been using for client-server communication in web application. However, there is a new paradigm with the same purpose: mobile agent technology. Mobile agent technology has several advantages working on distributed internet-based system. This paper presents, applying mobile agent technology in internet-based speech recognition which based on client-server processing architecture.

  • PDF

A VQ Codebook Design Based on Phonetic Distribution for Distributed Speech Recognition (분산 음성인식 시스템의 성능향상을 위한 음소 빈도 비율에 기반한 VQ 코드북 설계)

  • Oh Yoo-Rhee;Yoon Jae-Sam;Lee Gil-Ho;Kim Hong-Kook;Ryu Chang-Sun;Koo Myoung-Wa
    • Proceedings of the KSPS conference
    • /
    • 2006.05a
    • /
    • pp.37-40
    • /
    • 2006
  • In this paper, we propose a VQ codebook design of speech recognition feature parameters in order to improve the performance of a distributed speech recognition system. For the context-dependent HMMs, a VQ codebook should be correlated with phonetic distributions in the training data for HMMs. Thus, we focus on a selection method of training data based on phonetic distribution instead of using all the training data for an efficient VQ codebook design. From the speech recognition experiments using the Aurora 4 database, the distributed speech recognition system employing a VQ codebook designed by the proposed method reduced the word error rate (WER) by 10% when compared with that using a VQ codebook trained with the whole training data.

  • PDF

A Voice-Activated Dialing System with Distributed Speech Recognition in WiFi Environments (무선랜 환경에서의 분산 음성 인식을 이용한 음성 다이얼링 시스템)

  • Park Sung-Joon;Koo Myoung_wan
    • MALSORI
    • /
    • no.56
    • /
    • pp.135-145
    • /
    • 2005
  • In this paper, a WiFi phone system with distributed speech recognition is implemented. The WiFi phone with voice-activated dialing and its functions are explained. Features of the input speech are extracted and are sent to the interactive voice response (IVR) server according to the real-time transport protocol (RTP). Feature extraction is based on the European Telecommunication Standards Institute (ETSI) standard front-end, but is modified to reduce the processing time. The time for front-end processing on a WiFi phone is compared with that in a PC.

  • PDF

Scalable High-quality Speech Reconstruction in Distributed Speech Recognition Environments (분산음성인식 환경에서 서버에서의 스케일러블 고품질 음성복원)

  • Yoon, Jae-Sam;Kim, Hong-Kook;Kang, Byung-Ok
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.423-424
    • /
    • 2007
  • In this paper, we propose a scalable high-quality speech reconstruction method for distributed speech recognition (DSR). It is difficult to reconstruct speech of high quality with MFCCs at the DSR server. Depending on the bit-rate available by the DSR system, we can send additional information associated with speech coding to the DSR sorrel, where the bit-rate is variable from 4.8 kbit/s to 11.4 kbit/s. The experimental results show that the speech quality reproduced by the proposed method when the bit-rate is 11.4 kbit/s is comparable with that of ITU-T G.729 under both ideal channel and frame error channel conditions while the performance of DSR is maintained to that of wireline speech recognition.

  • PDF

A Parallel Speech Recognition Model on Distributed Memory Multiprocessors (분산 메모리 다중프로세서 환경에서의 병렬 음성인식 모델)

  • 정상화;김형순;박민욱;황병한
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.44-51
    • /
    • 1999
  • This paper presents a massively parallel computational model for the efficient integration of speech and natural language understanding. The phoneme model is based on continuous Hidden Markov Model with context dependent phonemes, and the language model is based on a knowledge base approach. To construct the knowledge base, we adopt a hierarchically-structured semantic network and a memory-based parsing technique that employs parallel marker-passing as an inference mechanism. Our parallel speech recognition algorithm is implemented in a multi-Transputer system using distributed-memory MIMD multiprocessors. Experimental results show that the parallel speech recognition system performs better in recognition accuracy than a word network-based speech recognition system. The recognition accuracy is further improved by applying code-phoneme statistics. Besides, speedup experiments demonstrate the possibility of constructing a realtime parallel speech recognition system.

  • PDF

A Study on the Speech Recognition of Korean Phonemes Using Recurrent Neural Network Models (순환 신경망 모델을 이용한 한국어 음소의 음성인식에 대한 연구)

  • 김기석;황희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.782-791
    • /
    • 1991
  • In the fields of pattern recognition such as speech recognition, several new techniques using Artifical Neural network Models have been proposed and implemented. In particular, the Multilayer Perception Model has been shown to be effective in static speech pattern recognition. But speech has dynamic or temporal characteristics and the most important point in implementing speech recognition systems using Artificial Neural Network Models for continuous speech is the learning of dynamic characteristics and the distributed cues and contextual effects that result from temporal characteristics. But Recurrent Multilayer Perceptron Model is known to be able to learn sequence of pattern. In this paper, the results of applying the Recurrent Model which has possibilities of learning tedmporal characteristics of speech to phoneme recognition is presented. The test data consist of 144 Vowel+ Consonant + Vowel speech chains made up of 4 Korean monothongs and 9 Korean plosive consonants. The input parameters of Artificial Neural Network model used are the FFT coefficients, residual error and zero crossing rates. The Baseline model showed a recognition rate of 91% for volwels and 71% for plosive consonants of one male speaker. We obtained better recognition rates from various other experiments compared to the existing multilayer perceptron model, thus showed the recurrent model to be better suited to speech recognition. And the possibility of using Recurrent Models for speech recognition was experimented by changing the configuration of this baseline model.

Method for Spectral Enhancement by Binary Mask for Speech Recognition Enhancement Under Noise Environment (잡음환경에서 음성인식 성능향상을 위한 바이너리 마스크를 이용한 스펙트럼 향상 방법)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.468-474
    • /
    • 2010
  • The major factor that disturbs practical use of speech recognition is distortion by the ambient and channel noises. Generally, the ambient noise drops the performance and restricts places to use. DSR (Distributed Speech Recognition) based speech recognition also has this problem. Various noise cancelling algorithms are applied to solve this problem, but loss of spectrum and remaining noise by incorrect noise estimation at low SNR environments cause drop of recognition rate. This paper proposes methods for speech enhancement. This method uses MMSE-STSA for noise cancelling and ideal binary mask to compensate damaged spectrum. According to experiments at noisy environment (SNR 15 dB ~ 0 dB), the proposed methods showed better spectral results and recognition performance.

Decision Rule using Confidence Based Anti-phone Model and Interrupt-Polling Method for Distributed Speech Recognition DSP Networking System (분산형 음성인식 DSP 네트워킹 시스템을 위한 반음소 모델기반의 신뢰도를 사용한 결정규칙과 인터럽트-폴링)

  • Song, Ki-Chang;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1016-1022
    • /
    • 2010
  • Far-talking recognition and distributed speech recognition networking techniques are essential to control various and complex home services conveniently with voices. It is possible to control devices everywhere at home by using only voices. In this paper, we have developed the server-client DSP module for distributed speech recognition network system and proposed a new decision rule to decide intelligently whether to accept the recognition results or not by the transferred confidence rate. Simulation results show that the proposed decision rule delivers better performances than the conventional decision by majority rule or decision by first-arrival. Also, we have proposed the new interrupt-polling technique to remedy the defect of existing delay technique which always has to wait several clients' results for a few seconds. The proposed technique queries all client's status after first-arrival and decides whether to wait or not. It can remove unnecessary delay-time without any performance degradation.

HMM-based missing feature reconstruction for robust speech recognition in additive noise environments (가산잡음환경에서 강인음성인식을 위한 은닉 마르코프 모델 기반 손실 특징 복원)

  • Cho, Ji-Won;Park, Hyung-Min
    • Phonetics and Speech Sciences
    • /
    • v.6 no.4
    • /
    • pp.127-132
    • /
    • 2014
  • This paper describes a robust speech recognition technique by reconstructing spectral components mismatched with a training environment. Although the cluster-based reconstruction method can compensate the unreliable components from reliable components in the same spectral vector by assuming an independent, identically distributed Gaussian-mixture process of training spectral vectors, the presented method exploits the temporal dependency of speech to reconstruct the components by introducing a hidden-Markov-model prior which incorporates an internal state transition plausible for an observed spectral vector sequence. The experimental results indicate that the described method can provide temporally consistent reconstruction and further improve recognition performance on average compared to the conventional method.