• Title/Summary/Keyword: Distributed Security

Search Result 919, Processing Time 0.023 seconds

A Secure Healthcare System Using Holochain in a Distributed Environment

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.261-269
    • /
    • 2023
  • We propose to design a Holochain-based security and privacy protection system for resource-constrained IoT healthcare systems. Through analysis and performance evaluation, the proposed system confirmed that these characteristics operate effectively in the IoT healthcare environment. The system proposed in this paper consists of four main layers aimed at secure collection, transmission, storage, and processing of important medical data in IoT healthcare environments. The first PERCEPTION layer consists of various IoT devices, such as wearable devices, sensors, and other medical devices. These devices collect patient health data and pass it on to the network layer. The second network connectivity layer assigns an IP address to the collected data and ensures that the data is transmitted reliably over the network. Transmission takes place via standardized protocols, which ensures data reliability and availability. The third distributed cloud layer is a distributed data storage based on Holochain that stores important medical information collected from resource-limited IoT devices. This layer manages data integrity and access control, and allows users to share data securely. Finally, the fourth application layer provides useful information and services to end users, patients and healthcare professionals. The structuring and presentation of data and interaction between applications are managed at this layer. This structure aims to provide security, privacy, and resource efficiency suitable for IoT healthcare systems, in contrast to traditional centralized or blockchain-based systems. We design and propose a Holochain-based security and privacy protection system through a better IoT healthcare system.

Secure Distributed Cryptocurrency Transaction Model Through Personal Cold Wallet (개인용 보안장치를 통한 안전한 분산형 암호 화폐 거래 모델)

  • Lee, Chang Keun;Kim, In-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.187-194
    • /
    • 2019
  • Ever since the world's largest Bitcoin Echange, (Mt. Gox), was closed in March 2014 due to the series of hacking, still many other Exchages incl. recent Coinale in Korea have been attacked. Those hacking attempts never stopped and have caused significant threats to the overall industry of Crypto Currency and resulted in the loss of individual investors' asset. The DEX (Decentralized Exchange) has been proposed as a solution to fix the security problem at the Exchange, but still it is far away to resolve all issues. Therefore, this paper firstly analyzes security threats against existing Crypto Currency Exchanges and secondly derives security requirements for them. To do that it proposes a secure and distributed Crypto Currency Transaction Model through Personal Security devices as a solution. The paper also proves this new attempt by demonstrating its unique modelling; ultimately by adopting this modeling into Crypto Exchange is to avoid potential security threats.

Distributed Incremental Approximate Frequent Itemset Mining Using MapReduce

  • Mohsin Shaikh;Irfan Ali Tunio;Syed Muhammad Shehram Shah;Fareesa Khan Sohu;Abdul Aziz;Ahmad Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.207-211
    • /
    • 2023
  • Traditional methods for datamining typically assume that the data is small, centralized, memory resident and static. But this assumption is no longer acceptable, because datasets are growing very fast hence becoming huge from time to time. There is fast growing need to manage data with efficient mining algorithms. In such a scenario it is inevitable to carry out data mining in a distributed environment and Frequent Itemset Mining (FIM) is no exception. Thus, the need of an efficient incremental mining algorithm arises. We propose the Distributed Incremental Approximate Frequent Itemset Mining (DIAFIM) which is an incremental FIM algorithm and works on the distributed parallel MapReduce environment. The key contribution of this research is devising an incremental mining algorithm that works on the distributed parallel MapReduce environment.

Formal Analysis of Distributed Shared Memory Algorithms

  • Muhammad Atif;Muhammad Adnan Hashmi;Mudassar Naseer;Ahmad Salman Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.192-196
    • /
    • 2024
  • The memory coherence problem occurs while mapping shared virtual memory in a loosely coupled multiprocessors setup. Memory is considered coherent if a read operation provides same data written in the last write operation. The problem is addressed in the literature using different algorithms. The big question is on the correctness of such a distributed algorithm. Formal verification is the principal term for a group of techniques that routinely use an analysis that is established on mathematical transformations to conclude the rightness of hardware or software behavior in divergence to dynamic verification techniques. This paper uses UPPAAL model checker to model the dynamic distributed algorithm for shared virtual memory given by K.Li and P.Hudak. We analyse the mechanism to keep the coherence of memory in every read and write operation by using a dynamic distributed algorithm. Our results show that the dynamic distributed algorithm for shared virtual memory partially fulfils its functional requirements.

Policy-Based Security Management Model for Efficient Security Policy Management in Large-Scale Network (대규모 네트워크 망에서 효율적인 보안정책관리를 위한 정책기반 보안관리모델)

  • Hwang, Yoon-Cheol;Um, Nam-Kyeong;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1B
    • /
    • pp.87-93
    • /
    • 2003
  • As Information Security Technology has become rather transparent, wide, and integrated than in part, exclusive, and separated, A necessity of the study about integrating the separated distributed security systems into one module, has grown However, there is no integrated framework which can manage all separate security systems as one integrated one yet. Accordingly, we propose a new policy based network admirustrative model in this paper which can integrate individual security systems and distributed control way into one effectively.

Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

  • Kim, Sung-Hyun;Lee, Hee-Jo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.671-690
    • /
    • 2010
  • The continuous growth of attacks in the Internet causes to generate a number of rules in security devices such as Intrusion Prevention Systems, firewalls, etc. Policy anomalies in security devices create security holes and prevent the system from determining quickly whether allow or deny a packet. Policy anomalies exist among the rules in multiple security devices as well as in a single security device. The solution for policy anomalies requires complex and complicated algorithms. In this paper, we propose a new method to remove policy anomalies in a single security device and avoid policy anomalies among the rules in distributed security devices. The proposed method classifies rules according to traffic direction and checks policy anomalies in each device. It is unnecessary to compare the rules for outgoing traffic with the rules for incoming traffic. Therefore, classifying rules by in-out traffic, the proposed method can reduce the number of rules to be compared up to a half. Instead of detecting policy anomalies in distributed security devices, one adopts the rules from others for avoiding anomaly. After removing policy anomalies in each device, other firewalls can keep the policy consistency without anomalies by adopting the rules of a trusted firewall. In addition, it blocks unnecessary traffic because a source side sends as much traffic as the destination side accepts. Also we explain another policy anomaly which can be found under a connection-oriented communication protocol.

A Study on Hierarchical Distributed Intrusion Detection for Secure Home Networks Service (안전한 홈네트워크 서비스를 위한 계층적 분산 침입탐지에 관한 연구)

  • Yu, Jae-Hak;Choi, Sung-Back;Yang, Sung-Hyun;Park, Dai-Hee;Chung, Yong-Wha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • In this paper, we propose a novel hierarchical distributed intrusion detection system, named HNHDIDS(Home Network Hierarchical Distributed Intrusion Detection System), which is not only based on the structure of distributed intrusion detection system, but also fully consider the environment of secure home networks service. The proposed system is hierarchically composed of the one-class support vector machine(support vector data description) and local agents, in which it is designed for optimizing for the environment of secure home networks service. We support our findings with computer experiments and analysis.

Efficient distributed consensus optimization based on patterns and groups for federated learning (연합학습을 위한 패턴 및 그룹 기반 효율적인 분산 합의 최적화)

  • Kang, Seung Ju;Chun, Ji Young;Noh, Geontae;Jeong, Ik Rae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.73-85
    • /
    • 2022
  • In the era of the 4th industrial revolution, where automation and connectivity are maximized with artificial intelligence, the importance of data collection and utilization for model update is increasing. In order to create a model using artificial intelligence technology, it is usually necessary to gather data in one place so that it can be updated, but this can infringe users' privacy. In this paper, we introduce federated learning, a distributed machine learning method that can update models in cooperation without directly sharing distributed stored data, and introduce a study to optimize distributed consensus among participants without an existing server. In addition, we propose a pattern and group-based distributed consensus optimization algorithm that uses an algorithm for generating patterns and groups based on the Kirkman Triple System, and performs parallel updates and communication. This algorithm guarantees more privacy than the existing distributed consensus optimization algorithm and reduces the communication time until the model converges.

An Enhanced Privacy-Aware Authentication Scheme for Distributed Mobile Cloud Computing Services

  • Xiong, Ling;Peng, Daiyuan;Peng, Tu;Liang, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6169-6187
    • /
    • 2017
  • With the fast growth of mobile services, Mobile Cloud Computing(MCC) has gained a great deal of attention from researchers in the academic and industrial field. User authentication and privacy are significant issues in MCC environment. Recently, Tsai and Lo proposed a privacy-aware authentication scheme for distributed MCC services, which claimed to support mutual authentication and user anonymity. However, Irshad et.al. pointed out this scheme cannot achieve desired security goals and improved it. Unfortunately, this paper shall show that security features of Irshad et.al.'s scheme are achieved at the price of multiple time-consuming operations, such as three bilinear pairing operations, one map-to-point hash function operation, etc. Besides, it still suffers from two minor design flaws, including incapability of achieving three-factor security and no user revocation and re-registration. To address these issues, an enhanced and provably secure authentication scheme for distributed MCC services will be designed in this work. The proposed scheme can meet all desirable security requirements and is able to resist against various kinds of attacks. Moreover, compared with previously proposed schemes, the proposed scheme provides more security features while achieving lower computation and communication costs.

Security Awareness among Students in Campus Environment: Case Study

  • Najihah Osman;Haniza N;Zulkiflee M.
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.188-198
    • /
    • 2023
  • In this era of globalization without limitation, many security issues occur, especially in a public network. Internet users significantly increased every single day. However, only some users are aware of security issues when they use Internet services. For the campus network environment, both staffs and students are susceptible to security threats such as data theft, unauthorized access and more due to different levels of awareness towards security threats. This paper is to study the level of awareness among students on security issues based on KSA model. As a case study, the survey was distributed among students in the UTeM campus network. A quantitative study was conducted, and a structured questionnaire has been designed and distributed among students. The variables were focused on three (3) aspects, which are Knowledge, Skill and Ability (KSA). The finding shows the relationship between KSA with the level of awareness among students has been revealed. From the result, Knowledge is the most significant aspect that contributes to high awareness. For the future, a study about increasing students' knowledge about security issues should be addressed.