
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

192

Manuscript received April 5, 2024
Manuscript revised April 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.4.22

Formal Analysis of Distributed Shared Memory Algorithms

Muhammad Atif1, Muhammad Adnan Hashmi2, Mudassar Naseer1, and Ahmad Salman Khan3
muhammad.atif@cs.uol.edu.pk, ahashmi@hct.ac.ae, mudassar.naseer@cs.uol.edu.pk,

 ahmad.salman@se.uol.edu.pk
1 Department of Computer Science, The University of Lahore, Pakistan.

2 Department of Computer Information Science, Higher Colleges of Technology, UAE.
3 Department of Software Engineering, The University of Lahore, Pakistan.

Summary
The memory coherence problem occurs while mapping shared
virtual memory in a loosely coupled multiprocessors setup.
Memory is considered coherent if a read operation provides same
data written in the last write operation. The problem is addressed
in the literature using different algorithms. The big question is on
the correctness of such a distributed algorithm. Formal verification
is the principal term for a group of techniques that routinely use an
analysis that is established on mathematical transformations to
conclude the rightness of hardware or software behavior in
divergence to dynamic verification techniques. This paper uses
UPPAAL model checker to model the dynamic distributed
algorithm for shared virtual memory given by K.Li and P.Hudak.
We analyse the mechanism to keep the coherence of memory in
every read and write operation by using a dynamic distributed
algorithm. Our results show that the dynamic distributed algorithm
for shared virtual memory partially fulfils its functional
requirements.
Keywords:
Virtual memory, Distributed Algorithm, Formal Specification,
Verification.

1. Introduction

The idea of virtual memory becomes inevitable when
a system requires more memory than installed.Virtual
memory is known as usage of other than main memory as a
main memory. In the shared virtual memory, physically
separated memories (on the network) are shared among the
processors connected through a loosely coupled fashion.
Processes while executing in different processors may use
shared virtual memory like traditional virtual memory as
shown in Figure 1. Formal methods offer a large potential
to provide correctness measuring techniques [13][7][8][9].
This set of techniques helps us to avoid overlooking critical
issues. Formal methods provide different techniques to
model and check the complex systems as mathematical
entities. These models make it possible to verify a system’s
specifications better than empirical testing [2][3]. We apply
model-checking techniques to verify the memory coherence

problem where the shared virtual memory is managed
through distributed manager algorithms.

Fig. 1 Shared virtual memory [14].

In this paper, we study the dynamic distributed
memory management algorithm given in [14] where other
approaches, like centralized manager, fixed and broadcast
are also given. Implementing the centralization algorithm
becomes challenging when all of the traffic pases through a
central manager for each type of page fault. An algorithm
appears to have the best required results and general
features named as dynamic distributed manager algorithm.

The dynamic distributed manager algorithm is
comparatively better than other algorithms when there are a
lot of page faults and we need to manage the network traffic
in an efficient manner. The performance of this algorithm
shows that it is probable to implement it on a huge scale
multiprocessor. However, we verify the functional
requirement of this algorithm by using formal methods.
Formal Method is a standard word for system scheme,
investigation, and application methods that are designated
and used with scientific precision [4][5].

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

193

2. Literature Review

In [1] Venkateswarlu Chennareddy et al. verified weak
consistency model of distributed shared memory. CADP
(Construction and Analysis of Distributed Processes)
toolbox is used for design and implementation of model. In
[4] Johan.B et al. modeled memory management system of
virtual memory with MSVL tool. Memory Management
System is formalized by using MSVL (Modeling
Simulation and Verification Language) using Model
Checking Approach. This approach is applied to verify the
perfection, delay linked properties and regular repeated
properties. Munez et al. present the formal verification of a
sequentially consistent memory model where low level
functions were considered as sequential [4]. In [4], Kim G.
Larsen et al. perform model checking using UPPAAL and
verify the audio protocol. Researchers describe the
importance of structures in UPPAAL used for model
checking. Another integration of formal verification
through Cyber-Physical Systems (CPS) design process is
presented in the literature which is consisted of executing
transformation of AADL (Architecture Analysis and
Design Language) models and represented them in timed
automata. This was analyzed through model checking
(MC)[11].

In [12], authors gift a roaring placing on DSMC (Deep
Statistical Model Checking) to MECHATRONICUML,
some sort of DSML (Domain Specific Model Checking) for
the laptop software device kind of cycles/2d, victimization
the version checker UPPAAL.

3. Memory Coherence Problem

A single address space is shared by several processors
in shared virtual memory on the network as shown in Figure
1. It is allowed to all processors to directly access any
memory address in address space. Memory mapping
manager controls the implementation of mapping between
shared virtual memory address space and local memories.
Major responsibilities of a manager include to protect the
system from memory coherent problem that means a read
operation value on all processor must be same to the most
recent write operation.

Address spaces of shared virtual memory are divided
into pages. Pages are a point to a memory block. A different
copy of pages with read-only operation take place in
different processors physical memory at the same time, but
the page with write operation just locate in one processor’s
physical memory. Memory mapping manager scans its local
memory as well as address spaces of attached processors
from the shared virtual memory cache. A page fault occurs
due to memory reference where the page memory location

is not in the current physical memory of the processor. So
in the case of a page fault, manager rescue the page, get a
page from disk or any other processor. If another processor
has copies of the faulting memory page reference, then
manager need to do some effort for maintaining the memory
coherent. The memory coherent problem might be
encountered as these algorithms are maintaining the
memory. A shared virtual memory on loosely coupled
systems has no physical shared memory, and the
communication budget between processors is non-trivial.

3.1 Dynamic Distributed Memory Management

Dynamic distributed algorithm is a type of Distributed
Manager Algorithms where tasks are divided among
individual processors. In this algorithm, every processor has
its local table for maintaining the ownership of all pages,
which is known as PTable. This PTable has five columns
naming page id, access field, copy-set, probowner and lock
field [14].

i. Page id is the unique id of page.

ii. The access field shows the page accessibility roles i.e.
either read or write.

iii. The copy-set contains IDs of the processors having
copies of the page.

iv. Probowener mean a possible owner of a page

v. The lock field is used to avoid the race condition
between/among processors demanding the same page.

In this algorithm probowner is set in a way that there is
no loop for pointing out prbowner. For example, it is not
possible that a node A says probowner is the node B and the
node B says that the probowner is the node A.

In this protocol, every node sends requests to it’s
probowner and if that is actual owner it replies back, otherwise
forwards the request to probowner. Eventually, a page is
served from the actual owner.

3.1.1 Read Operation

Two processors are involved in each read operation,
one is read fault handler (which is request for read access)
and the other is read server (which is specified in probowner
field). For read access, fault handler requests to a processor
mentioned by probowner field. If read server is true owner
of the requested page, then it needs to do following
operations:

i. Add itself to copy set of requested page.

ii. Change access to “Read” in its PTable.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

194

iii. Send page and page copy set to faulting processor.

iv. Add faulting processor in to probowner field of its
PTable.

If the read server is not a true owner of requested page,
then it forwards request to processor which is mentioned in
probowner field of its PTable. It also updates its probowner
field with requested node. Everytime a faulting processor
receives a page copy, it updates its PTable along with
probowner field with “self” and changes access to “read”.

3.1.2 Write Operation

Write operation is also working same as read operation
except invalidating pages according to the copy set. Two
processors are also involved in each write operation, one is
write fault handler (which requests for the write access) and
other is write server (which is specified in probowner field).
For write access, fault handler requests to a processor
mentioned by probowner field. If write server is true owner
of the requested page, then it needs to do the following
operations:

1) Change access to “nill” in its PTable.

2) Send page and page copy set to faulting processor.

3) Add requested processor in to probowner field of its
PTable.

If the write server is not the true owner of the requested
page, then it forwards request to the processorhe true owner
of the requested page, it forwards request to the processor
mentioned in the probowner field of its PTable. It also
updates its probowner field with the requested node. When
faulting processor receives page copy, first it invalidates all
copies from the copy set.

3.2 Formal Specification

In Dynamic Distributed Manager Algorithm of shared
virtual memory, there are synchronized processes that we
have previously discussed. We cultivate models for every
synchronized process. We practice the UPPAAL tool suit
[15][6] for modelling these processes. Modelling the
“Dynamic Distributed Manager Algorithm of shared virtual
memory” turned out to be suitable in definite situations to
apply broadcast communications. Structures of UPPAAL
with the broadcast frequencies and the dedicated positions
let the broadcast communication categorized as the atomic
arrangements of identical process organizations. Our
foremost apprehension at investigates in this paper is to
demonstrate the formal analysis of [14] through the use of
UPPAAL. We deliver a complete examination of numerous

protocol varieties in relation to the verification of complete
functional requirements.

Let us discuss the summary of prescribed requirement
in the toolset UPPAAL and then the formalism which is
castoff in prescribed requirement of the Dynamic
Distributed Manager algorithm. For demonstrating dynamic
distributed manager algorithm in UPPAAL, we generate
two local processes. These processes are named as
processors and they request as well as serve all page read
and write requests. These processes perform the following
tasks:

1. Genrate a read fault.
2. Handle a read fault request.
3. Forward a read request to probowner.
4. Genrate a write fault.
5. Handle a write fault request.
6. Forward a write request to probowner.
7. Invalidate pages upon giving up ownership.

A processed named as Invalidate-process is modeled

to address all the requests from all the processes when they
want to invalidate old copies of pages. Essentially, the
Invalidate-process behaves like a buffer to process requests
one by one. A process invalidate pages according to the
copy set while transferring ownership of a page. It means a
a page is going to be updated and previously used copies of
that page are invalidated. A process gets the updated copy
of a page by generating a read fault request.

4. Results and Discussion

We present prescribed analysis of the dynamic
distributed manager algorithm presented in [14]. The
specification of this distributed algorithm in an automaton
theoretic formalism is formalized and then functional
requirements are verified.

4.1 Functional Requirements

We discover the following functional requirements of
algorithm for formal analysis and formal verification.

R1: Deadlock freedom. No deadlock is supposed to be there
when any processor request for the read or write the page in
the system. System do not hang while anyone request for
read, write or broadcast invalidate request

R2: Any Processor can get read access of any page.

R3: Any Processor can get write access of any page.

R4: When a processor request for read the page,then the
processor must get the read access of the page. The true
owner of the page must send the page copy to the requested
processor.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

195

 R5: When a processor request for write the page. Then the
processor must get the write access of the page. The true
owner of the page must send the page write access to the
requested processor.

4.2 Formal Specification of the Requirements

The principal requirement is that system does not
contain any deadlock. According to requirement there is no
valid deadlock in the system. The model must be deadlock
free. So the query for verify this requirement is:

 A[] not deadlock

The query says that for all paths and states there is no
deadlock. In query ‘A’ represent to all path and ‘[]’
represent to all states. Any processor in the system can
get read access of any page, this means any process can
send read request for any page. Then the true owner of
the page will send the page access to the processor page.
The query for verify the R2 is given below:

 E<> forall (i:pro_id_t) forall (j:page_id_t)
Process(i).PTable[j][1]==1

This query uses nested loop. Outer loop for the
processor and inner loop is for the page. Query checks the
read access from the PTable. Query verifies the read access
for all pages under each processor. As described earlier the
index 1 show the page access value whereas 0, 1 and 2
represent the nil, read and write access, respectively.

Any processor in the system can get the write access
of any page, any process can send write request for any page.
The true owner of the page sends the page for the write
access to the requesting processor. The query for verify the
R3 is given below:

 E<> forall (i:pro_id_t) forall (j:page_id_t)
Process(i).PTable[j][1]==2. In the query ‘E’ represent to
‘Some path’ and ‘<>’ represent to ‘Some state’. This query
is similar to the query in R2 except it checked the write
access. For the write access, the value of index 1 in PTable
must be equal to 2. When the processor requests for reading
a page it must get read access of that page. So according to
this requirement, when a page request for read page process
reached at readFault state and when get the accesses it
reached backed at the ideal. The formula of R4 requirement
is given below.

 Process(1).ReadFault --> Process(1).Ideal

According to the R4 requirement, when Process (1)
reached at the readFault state it will definitely go back to
the ideal state. When the processor requests for write a page
it must get the write access of that page. So, according to
this requirement when a page request for write page,
process reached at writeFault state and when get the

accesses it reached backed at the ideal. The formula of R5
requirement is given below.

 Process(1).writeFault --> Process(1).Ideal

According to R5, when the Process (1) reaches at the
writeFault state it definitely goes back to the ideal state.

5. Conclusions

We verify our model with respect to the given functional
requirements and the results are shown in Table 3.1. We
model the algorithm with 3 processors and 8 pages.

Table 1: Verification Results

Requirements Results Time Memory

R1 Satisfied 19h25s 2.16GB

R2 Satisfied 0.046 102MB

R3 Satisfied 0.001s 29.16MB

R4 Satisfied 11.032s 100MB

R5 Satisfied 13.172s 102MB

We face some serious challenges in verifying and validating
these requirements. Challenges are related to machine
power in which we verify the requirements. First, we
execute it on a machine with the specification, windows 10,
8GB RAM and Core i5 7th generation. On this machine, the
model is executed for 20 minutes and then crashed due to
state space problem. We also executed this query on
MacBook 2016 with 16 GB RAM where it ran around 4
hours and then crashed. So, we need to execute it on a more
powerful machine to verify this requirement. Other four
requirements are satisfied with 2 processors and 2 pages.
We present the results in Table 1.

References
[1] Venkateswarlu Chennareddy and Jatindra Kumar Deka.

Formally Verifying the Distributed Shared Memory Weak
Consistency Models. IEEE, 2006.

[2] Simon Wimmer and Peter Lammich. Verified model
checking of timed automata. In Dirk Beyer and Marieke
Huisman, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 61–78, Cham, 2018. Springer
International Publishing.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

196

[3] Christel Baier, Joost-Pieter Katoen, et al. Principles of model
checking, vol. 26202649. MIT Press Cambridge, 26:58, 2008.

[4] Johan Bengtsson, WO David Griffioen, Kåre J Kristoffersen,
Kim G Larsen, Fredrik Larsson, Paul Pettersson, and Wang
Yi. Verification of an audio protocol with bus collision using
uppaal. In Computer Aided Verification, pages 244–256.
Springer, 1996.

[5] Lemerre M. Loulergue F. Blanchard A., Kosmatov N. A Case
Study on Formal Verification of the Anaxagoros Hypervisor
Paging System with Frama-C. Springer, Cham, 2015.

[6] Peter Bulychev, Alexandre David, Kim Larsen, Marius
Mikučionis, Danny Poulsen, Axel Legay, and Zheng Wang.
Uppaal-smc: Statistical model checking for priced timed
automata. EPTCS, 85, 07 2012.

[7] Edmund M Clarke and Jeannette M Wing. Formal methods:
State of the art and future directions. ACM Computing
Surveys (CSUR), 28(4):626–643, 1996.

[8] A. Fernandez G. David, Kim G. Larsen, Axel Legay, Marius
Mikucionis, and Danny Bøgsted Poulsen. Uppaal smc tutorial.
International Journal on Software Tools for Technology
Transfer, 17:397–415, 2014.

[9] David Fabian and Radek Marik. Configuration dynamics
verification using Uppaal. In Configuration Workshop, 2013.

[10] Y. Fei, H. Zhu, and X. Li. Modeling and verification of nlsr
protocol using uppaal. In 2018 International Symposium on
Theoretical Aspects of Software Engineering (TASE), pages
108–115, Aug 2018.

[11] Eduardo Tovar Leandro Buss Becker Fernando Silvano
Gonçalves, David Pereira. Formal Verification of AADL
Models Using UPPAAL. IEEE, 2017.

[12] Christopher Gerking, Stefan Dziwok, Christian Heinzemann,
and Wilhelm Schäfer. Domain-specific model checking for
cyber-physical systems. 09 2015.

[13] Naseem Ibrahim and Ismail Khalil Al Ani. Verifying web
services compositions using Uppaal. 12 2012.

[14] Paul Hudak and Kai Li. Memory coherence in shared virtual
memory systems. In ACM Transactions on Computer
Systems, 1989, Proceedings, The 5th Annual ACM
Symposium on Principles of Distributed Computing, pages
321–359. ACM, 1989.

[15] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
nutshell. International Journal on Software Tools for
Technology Transfer (STTT), 1(1):134– 152, 1997.

