• Title/Summary/Keyword: Distributed Power Amplifier

Search Result 42, Processing Time 0.036 seconds

2~16 GHz GaN Nonuniform Distributed Power Amplifier MMIC (2~16 GHz GaN 비균일 분산 전력증폭기 MMIC)

  • Bae, Kyung-Tae;Lee, Ik-Joon;Kang, Hyun-Seok;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.1019-1022
    • /
    • 2016
  • In this paper, a 2~16 GHz GaN wideband power amplifier MMIC s designed and fabricated using the nonuniform power amplifier design technique that utilizes drain shunt capacitors to simultaneously provide each transistor with the optimum load impedance and phase balance between input and output transmission lines. The power amplifier MMIC chip that is fabricated using the $0.25{\mu}m$ GaN HEMT foundry process of Win Semiconductors occupies an area of $3.9mm{\times}3.1mm$ and shows a linear gain of larger than 12 dB and an input return loss of greater than 10 dB. Under a continuous-wave mode, it has a saturated output power of 36.2~38.5 dBm and a power-added efficiency of about 8~16 % in 2 to 16 GHz.

A Novel CPW Balanced Distributed Amplifier Using Broadband Impedance-Transforming MEMS Baluns

  • Lee, Sanghyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.610-612
    • /
    • 2013
  • A novel balanced distributed amplifier (DA) was proposed using novel impedance transforming MEMS baluns. The impedance transforming MEMS balun is matched to $50{\Omega}$ at one input port and $25{\Omega}$ at two output ports. It is based on the electric field mode-change method, thus it is strongly independent of frequency and very compact. The novel balanced DA consists of two $25{\Omega}$-matched DAs and these are combined by $50{\Omega}$-to-$25{\Omega}$ baluns. Theoretically, it has two times wider bandwidth and power capability than the conventional DA. So as to verify the proposed concept, we designed and fabricated a conventional DA and the proposed one using 0.15-${\mu}m$ GaAs pHEMT technology.

6-18 GHz Reactive Matched GaN MMIC Power Amplifiers with Distributed L-C Load Matching

  • Kim, Jihoon;Choi, Kwangseok;Lee, Sangho;Park, Hongjong;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • A commercial $0.25{\mu}m$ GaN process is used to implement 6-18 GHz wideband power amplifier (PA) monolithic microwave integrated circuits (MMICs). GaN HEMTs are advantageous for enhancing RF power due to high breakdown voltages. However, the large-signal models provided by the foundry service cannot guarantee model accuracy up to frequencies close to their maximum oscillation frequency ($F_{max}$). Generally, the optimum output load point of a PA varies severely according to frequency, which creates difficulties in generating watt-level output power through the octave bandwidth. This study overcomes these issues by the development of in-house large-signal models that include a thermal model and by applying distributed L-C output load matching to reactive matched amplifiers. The proposed GaN PAs have successfully accomplished output power over 5 W through the octave bandwidth.

A Design of High Efficiency Distributed Amplifier Using Optimum Transmission Line (최적 전송 선로를 이용한 고효율 분산형 증폭기의 설계)

  • Choi, Heung-Jae;Ryu, Nam-Sik;Jeong, Young-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • In this paper, we propose a numerical analysis on reversed current of distributed amplifier based on transmission line theory and proposed a theory to obtain optimum transmission line length to minimize the reversed currents by cancelling those components. The reversed current is analyzed as being simply absorbed into the terminal resistance in the conventional analysis. In the proposed analysis, however, they are designed to be cancelled by each other with opposite phase by the optimal length of the transmission lint Circuit simulation and implementation using pHEMT transistor were performed to validate the proposed theory with the cutoff frequency of 3.6 GHz. From the measurement, maximum gain of 14.5dB and minimum gain of 12.3dB were achieved In the operation band. Moreover, measured efficiency of the proposed distributed amplifier is 25.6% at 3 GHz, which is 7.6%, higher than the conventional distributed amplifier. Measured output power Is about 10.9dBm, achieving 1.7dB higher output power than the conventional one. Those improvement is thought to be based on the cancellation of refersed current.

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit (분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계)

  • Choi, Heung-Jae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.681-689
    • /
    • 2010
  • We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

High Efficiency Frequency Tunable Inverse Class-E Amplifier (고효율 주파수 가변 역 E-급 증폭기)

  • Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.176-182
    • /
    • 2010
  • This paper proposes that an inverse class-E amplifier is used a tunable parallel resonator at output port in order to maintain a high power-added efficiency(PAE) and output power with wide frequency ranges. A tunable circuit has a constant Q factor at operating frequency ranges and because of using varactor diode, the inductor and capacitor values of resonator can be changed. Also, the inductance value for zero-current switching (ZCS) is implemented a lumped element and the capacitance value is made a distributed element for phase compensation. The inverse class E amplifier using tunable parallel resonator is obtained to deliver 25dBm output power and achieve maximum power added efficiency(PAE) of 75% at 65-120MHz frequency ranges.

Design of Dual-Band Power Amplifier for the RFID Frequency-Band (RFID 대역에서 동작하는 이중 대역 전력증폭기 설계)

  • Kim, Jae-Hyun;Hwang, Sun-Gook;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.376-379
    • /
    • 2014
  • In this paper, we designed more improving a dual-band power amplifier than the transceiver of RFID reader that operates at 910 MHz and 2.45 GHz. A dual-band power amplifier has two circuits. One matching circuit is composed lumped element in the band of 910 MHz. The other matching circuit using distributed element in the high band of 2.45 GHz. So, this dual-band power amplifier works as Band Rejection Filter in the band of 910 MHz but in the high band of 2.45 GHz works as Band Pass Filter. Therefore, this is composed a microstrip transmission line. A power amplifier is showed gains of 8 dB output power at 910 MHz and 1.5 dB output power at 2.45 GHz. If input power is 10 dBm, both of bands output 20 dBm.

Three stage amplification of Distributed Feedback Dye Laser (Distributed Feedback Dye Laser의 3단 증폭특성)

  • 이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.339-341
    • /
    • 2004
  • We obtained ultra-short single pulse with an energy of 80 of from self Q-switched Distributed Feedback Dye Laser. Using three stages of amplifiers constructed by two stages of dye amplifiers and one bethune cell amplifier, we obtained high power pulse and second harmonic generation with BBO in ultraviolet region.

  • PDF

A Novel Hybrid Islanding Detection Method Using Digital Lock-In Amplifier (디지털 록인 앰프를 이용한 새로운 하이브리드 방식의 단독운전 검출법)

  • Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.77-79
    • /
    • 2019
  • Islanding detection is one of the most important issues for the distributed generation (DG) systems connected to the power grid. The conventional passive islanding detection methods inherently have a non-detection zone (NDZ), and active islanding detection methods may deteriorate the power quality of a power system. This paper proposes a novel hybrid islanding detection method based on Digital Lock-In Amplifier with no NDZ by monitoring the harmonics present in the grid. Proposed method detects islanding by passively monitoring the grid voltage harmonics and verify it by injecting small perturbation for only three-line cycles. Unlike FFT for the harmonic extraction, DLA HC have lower computational burden, moreover, DLA can monitor harmonic in real time, whereas, FFT has certain propagation delay. The simulation results are presented to highlight the effectiveness of the proposed technique. In order to prove the performance of the proposed method it is compared with several passive islanding detection methods. The experimental results confirm that the proposed method exhibits outstanding performance as compared to the conventional methods.

  • PDF

Impact of the Spectral Linewidth of a Pseudorandom Binary Sequence (PRBS)-Modulated Laser on Stimulated Brillouin Scattering and Beam Quality

  • Aeri Jung;Sanggwon Song;Kwang Hyun Lee;Jung Hwan Lee;Kyunghwan Oh
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.665-672
    • /
    • 2023
  • This study focuses on investigating the impact of the spectral linewidth of a seed laser in a master-oscillator power amplifier (MOPA) configuration on stimulated Brillouin scattering and the beam quality of the output diffracted by a grating. To conduct the study, a distributed feedback (DFB) laser is modulated in a pseudorandom binary sequence (PRBS) and amplified by a two-stage Yb-doped fiber amplifier to achieve an output power of over 1 kW. The spectral linewidth of the seed laser is systematically varied from 1 to 12 GHz in the frequency domain by varying the PRBS modulation parameters. The experimental results reveal a tradeoff between suppressing stimulated Brillouin scattering and enhancing beam quality with increased spectral linewidth. Therefore, the study provides valuable insights into optimizing spectral beam combining to achieve high beam quality and scalable power upgrade in fiber lasers.