• Title/Summary/Keyword: Distributed Parameter Model

Search Result 250, Processing Time 0.025 seconds

Stochastic MAC-layer Interference Model for Opportunistic Spectrum Access: A Weighted Graphical Game Approach

  • Zhao, Qian;Shen, Liang;Ding, Cheng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.411-419
    • /
    • 2016
  • This article investigates the problem of distributed channel selection in opportunistic spectrum access networks from a perspective of interference minimization. The traditional physical (PHY)-layer interference model is for information theoretic analysis. When practical multiple access mechanisms are considered, the recently developed binary medium access control (MAC)-layer interference model in the previous work is more useful, in which the experienced interference of a user is defined as the number of competing users. However, the binary model is not accurate in mathematics analysis with poor achievable performance. Therefore, we propose a real-valued one called stochastic MAC-layer interference model, where the utility of a player is defined as a function of the aggregate weight of the stochastic interference of competing neighbors. Then, the distributed channel selection problem in the stochastic MAC-layer interference model is formulated as a weighted stochastic MAC-layer interference minimization game and we proved that the game is an exact potential game which exists one pure strategy Nash equilibrium point at least. By using the proposed stochastic learning-automata based uncoupled algorithm with heterogeneous learning parameter (SLA-H), we can achieve suboptimal convergence averagely and this result can be verified in the simulation. Moreover, the simulated results also prove that the proposed stochastic model can achieve higher throughput performance and faster convergence behavior than the binary one.

Application of SDAHL-74 Watershed Model to a Long Term Runoff Analysis in the Mountainous Watershed (산지유역에 대한 USDAHL-74 유역수문모형의 장기유출 해석적용)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.53-63
    • /
    • 1987
  • Due to their wide range of application, deterministic comprehensive hydrologic models using digital computers have been developed in all countries of the world and researches are being undertaken for their appropriate applications. The aim of this study has been to demonstrate the practical implementation of a physically based distributed hydrologic model, the USDAHL-74 model and to investigate its ability to simulate the long term estimate of water balance quantities in a Korean mountainous watershed. Application of the model to Dochuk watershed indicates the following results. 1.Since the USDAHL-74 model includes all the major components of the hydrologic cycle in agricultural watersheds, thus is comprehnsive, the model seems to have a wide range of application from the fact that simulation results obtained are not only runoff volumes m various time units but their spatial variation as well as even soil moisture within the watershed. 2.An approximate calibration to determine the parameter values in the model using various data obtained from D0chuk shed shows that the simulation error of yearly runoff volume is only 0.6 % and a correlation coefficient between observed daily runoff volume and simulated one is 0.91 in all calibrated period.3.As a verification test of the model, runoff volumes are simulated using 1986 year data without changing the parameter values determined by 1985 year data. The tests show that the USDAHL-74 model is a flexible tool and that realistic production to simulate the long term estimate of runoff in Korean mountainous watershed could be obtained using only a short period of calibration.4. Despite of the encouraging results, there still remain minor problems concerning the practical application of the model to improve the result of simulations. Some of these are the small descrepancies between observed and simulated daily runoff volume appeared in the vicinity of peaks and the recession of1 the daily hydrographs and the model performance for the frozen ground and melting process in the model. 5. Alough the use of parameter with physical significance and the ability to improve calibrations on the basis of physical reasoning represents advantages in the simulation for ungaged watersheds, further researches are needed to use the USDAHL-74 mode to simulate runoff in ungaged watersheds.

  • PDF

A Study on Thermal Analysis of Dual Beam Laser Welding of Thin Metal Sheet (박판의 이중 빔 레이저 용접에서 열유동 해석에 관한 연구)

  • 김재웅
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.99-108
    • /
    • 1997
  • Analytical model for the temperature distribution and the cooling rate of weld in dual beam laser welding is presented for investigating the possibility of controling the cooling rate. The model is based on the solutions to the problem of heat flow due to the distributed and line heat sources for preheating and welding respectively in plates with finite thickness. The effects of beam power, beam distribution parameter, interbeam distance, and welding speed on the resulting temperature distribution and cooling rate are presented. The cooling rates of dual beam laser weld at the weld centerline under the investigated conditions are reduced to as one third of those of welds which were produced by single beam laser. And it appeared that the cooling rate of dual beam laser weld is strongly dependent on the process parameters of preheating laser beam power and welding speed.

  • PDF

A Study on the PMC Adaptation for Speech Recognition under Noisy Conditions (잡음 환경에서의 음성인식을 위한 PMC 적응에 관한 연구)

  • 김현기
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.9-14
    • /
    • 2002
  • In this paper we propose a method for performance enhancement of speech recognizer under noisy conditions. The parallel combination model which is presented at the PMC method using multiple Gaussian-distributed mixtures have been adapted to the variation of each mixture. The CDHMM(continuous observation density HMM) which has multiple Gaussian distributed mixtures are combined by the proposed PMC method. Also, the EM(expectation maximization) algorithm is used for adapting the model mean parameter in order to reduce the variation of the mixture density. The result of simulation, the proposed PMC adaptation method show better performance than the conventional PMC method.

  • PDF

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

  • Lata, Parveen;Singh, Sukhveer
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.397-410
    • /
    • 2020
  • The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

A Study on PRMS Applicability for Korean River Basin (국내무역에서의 PRMS 모형의 적용성에 관한 연구)

  • Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.713-725
    • /
    • 2005
  • The objective of this study is to evaluate the applicability and simulation capability of PRMS, developed by U.S. Geological Survey, over the seven multi-purpose dam watersheds in Korea. The basic concepts of model components and their parameters are investigated for the evaluation of model applicability and the possibility of model parameter estimation is suggested based on the data availibility. For model parameter estimation, some parameters are directly estimated from measurable basin characteristics, but the others are estimated by Rosenbrock's automatic optimization scheme. The results show that the simulated flows from the model were very close to the observed ones. Although the default values for snowmelt model parameter are used, the results from snowmelt simulation is also acceptable. The model shows that the simulation capability is not sensitive to the basin size, however, according to increasing basin area, simulation characteristics are close to those for lumped model rather than semi-distributed model.

Development and Application of the Catchment Hydrologic Cycle Assessment Tool Considering Urbanization (I) - Model Development - (도시화에 따른 물순환 영향 평가 모형의 개발 및 적용(I) - 모형 개발 -)

  • Kim, Hyeon-Jun;Jang, Cheol-Hee;Noh, Seong-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2012
  • The objective of this study is to develop a catchment hydrologic cycle assessment model which can assess the impact of urban development and designing water cycle improvement facilities. Developed model might contribute to minimize the damage caused by urban development and to establish sustainableurban environments. The existing conceptual lumped models have a potential limitation in their capacity to simulate the hydrologic impacts of land use changes and assess diverse urban design. The distributed physics-based models under active study are data demanding; and much time is required to gather and check input data; and the cost of setting up a simulation and computational demand are required. The Catchment Hydrologic Cycle Assessment Tool (hereinafter the CAT) is a water cycle analysis model based on physical parameters and it has a link-node model structure. The CAT model can assess the characteristics of the short/long-term changes in water cycles before and after urbanization in the catchment. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. the model was applied to Seolma-cheon catchment, also calibrated and validated using 6 years (2002~2007) hourly streamflow data in Jeonjeokbigyo station, and the Nash-Sutcliffe model efficiencies were 0.75 (2002~2004) and 0.89 (2005~2007).

Development of an integrative cardiovascular system model including cell-system and arterial network (세포-시스템 차원의 혈류역학적 심혈관 시스템 모델의 개발)

  • Shim, Eun-Bo;Jun, Hyung-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.542-546
    • /
    • 2008
  • In this study, we developed a whole cardiovascular system model combined with a Laplace heart based on the numerical cardiac cell model and a detailed arterial network structure. The present model incorporates the Laplace heart model and pulmonary model using the lumped parameter model with the distributed arterial system model. The Laplace heart plays a role of the pump consisted of the atrium and ventricle. We applied a cellular contraction model modulated by calcium concentration and action potential in the single cell. The numerical arterial model is based upon a numerical solution of the one-dimensional momentum equations and continuity equation of flow and vessel wall motion in a geometrically accurate branching network of the arterial system including energy losses at bifurcations. For validation of the present method, the computed pressure waves are compared with the existing experimental observations. Using the cell-system-arterial network combined model, the pathophysiological events from cells to arterial network are delineated.

  • PDF

Development of Grid-Based Conceptual Hydrologic Model (격자기반의 개념적 수문모형의 개발)

  • Kim, Byung-Sik;Yoon, Seon-Kyoo;Yang, Dong-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.667-679
    • /
    • 2010
  • The distributed hydrologic model has been considerably improved due to rapid development of computer hardware technology as well as the increased accessibility and the applicability of hydro-geologic information using GIS. It has been acknowledged that physically-based distributed hydrologic model require significant amounts of data for their calibration, so its application at ungauged catchments is very limited. In this regard, this study was intended to develop a distributed hydrologic model (S-RAT) that is mainly based on conceptually grid-based water balance model. The proposed model shows advantages as a new distributed rainfall-runoff model in terms of their simplicity and model performance. Another advantage of the proposed model is to effectively assess spatio-temporal variation for the entire runoff process. In addition, S-RAT does not rely on any commercial GIS pre-processing tools because a built-in GIS pre-processing module was developed and included in the model. Through the application to the two pilot basins, it was found that S-RAT model has temporal and spatial transferability of parameters and also S-RAT model can be effectively used as a radar data-driven rainfall-runoff model.