DOI QR코드

DOI QR Code

Development of Grid-Based Conceptual Hydrologic Model

격자기반의 개념적 수문모형의 개발

  • Kim, Byung-Sik (Water Resources Research Div., Korea Institute of Construction Technology) ;
  • Yoon, Seon-Kyoo (Water Resources Research Div., Korea Institute of Construction Technology) ;
  • Yang, Dong-Min (Institute of Technology, NOAA Solution) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University)
  • 김병식 (한국건설기술연구원 수자원.환경연구본부 수자원연구실) ;
  • 윤선규 (한국건설기술연구원 수자원.환경연구본부 수자원연구실) ;
  • 양동민 (노아솔루션 기술연구소) ;
  • 권현한 (전북대학교 토목공학과)
  • Received : 2010.05.24
  • Accepted : 2010.07.19
  • Published : 2010.07.31

Abstract

The distributed hydrologic model has been considerably improved due to rapid development of computer hardware technology as well as the increased accessibility and the applicability of hydro-geologic information using GIS. It has been acknowledged that physically-based distributed hydrologic model require significant amounts of data for their calibration, so its application at ungauged catchments is very limited. In this regard, this study was intended to develop a distributed hydrologic model (S-RAT) that is mainly based on conceptually grid-based water balance model. The proposed model shows advantages as a new distributed rainfall-runoff model in terms of their simplicity and model performance. Another advantage of the proposed model is to effectively assess spatio-temporal variation for the entire runoff process. In addition, S-RAT does not rely on any commercial GIS pre-processing tools because a built-in GIS pre-processing module was developed and included in the model. Through the application to the two pilot basins, it was found that S-RAT model has temporal and spatial transferability of parameters and also S-RAT model can be effectively used as a radar data-driven rainfall-runoff model.

분포형 수문모형은 컴퓨터 하드웨어의 급속한 발전과 GIS를 이용한 수문지리공간정보에의 접근성 및 활용성 증가에 따라 근래에 많은 발전을 이루게 되었다. 하지만 물리기반의 분포형 수문모형은 입력자료 구축 및 모형구동에 많은 시간과 노력이 필요하며 수문자료가 불충분한 미계측 유역에서는 모형의 구축이 어렵다는 한계점을 지니고 있다. 이에 본 논문에서는 개념적 격자 물수지 기법을 이용한 개념적 분포형 수문모형 S-RAT을 개발하였다. S-RAT 모형은 집중형 수문모형의 자료구축의 간편성과 분포형 수문모형의 공간적 유출해석 능력을 동시에 만족할 수 있으며 격자기반 레이더강우자료를 활용할 수 있다. 또한 전처리과정 및 유역의 지형자료 추출 기능을 탑재함으로 상용 GIS 분석 도구들에 대한 의존성이 없는 장점을가진다. 본 논문에서는 도시유역인 중랑천 유역과 산지유역인 내린천 유역 적용을 통해 S-RAT 모형의 유출모의능력 및 매개변수의 시공간적 전이성을 확인하였으며 지상강우와 레이더강우의 입력 자료로써의 활용성을 확인하였다.

Keywords

References

  1. 국토해양부 (2005). 주요지천 홍수예보프로그램 개선.
  2. 김성준 (1998). “격자기반의 운동파 강우-유출모형 개발 (I)-이론 및 모형-.” 한국수자원학회논문집, 한국수자원학회, Vol. 31, No. 3, pp. 303-308.
  3. 노성진, 김현준, 장철희(2005). “청계천 유역에대한WEP 모형의 적용.” 한국수자원학회논문집, 한국수자원학회, Vol. 38, No. 8, pp. 645-653.
  4. 박진혁, 허영택 (2008). “홍수유출해석을 위한 운동파기반의 분포형 모형 개발 및 적용.” 한국수자원학회논문집, 한국수자원학회, Vol. 41, No. 4, pp. 509-518.
  5. 최윤석, 김경탁, 이진희 (2008). “유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발.” 한국수자원학회논문집, 한국수자원학회, Vol. 41, No. 9, pp. 895-905. https://doi.org/10.3741/JKWRA.2008.41.9.895
  6. 최현상 (2001). GIS와 불확실성 해석기법을 이용한 분포 형 강우-유출 모형의 개발, 박사학위논문, 경북대학교 한국건설기술연구원(1995) 이차원 하천모형의 개발(I) 한국건설기술연구원(1996) 이차원 하천모형의 개발 (II).
  7. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., and Rasmussen, J. (1986a). “An introduction to european hydrological system-systeme hydrologique europeen, ‘SHE’. 1. History and philosophy of a physically-based distributed modeling system.” Journal of Hydrology, Vol. 87, pp. 45-59. https://doi.org/10.1016/0022-1694(86)90114-9
  8. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., and Rassmussen, J. (1986b). “An introduction to the european hydrological system-systeme hydrologique european, ‘SHE’. 2. Structure of a physicallybased distributed modelling system.” Journal of Hydrology, Vol. 87, pp. 61-77. https://doi.org/10.1016/0022-1694(86)90115-0
  9. Kim, B.S., Kim, B.K., and Kim, H.S. (2008). “Flood simulation using the gauge-adjusted radar rainfall and physics-based distributed hydrologic model”. Hydrological Processes, Vol. 22, pp. 4400-4414. https://doi.org/10.1002/hyp.7043
  10. Band, L.E. (1986). “Topographic partition of watersheds with digital elevation models.” Water Resources Research, Vol. 22, pp. 15-24. https://doi.org/10.1029/WR022i001p00015
  11. Chow, V.T., Maidment, D.R., and Mays, L.W. (1988). Applied Hydrology. McGraw-Hill, Singapore.
  12. Cunge, J.A. (1969). “On the subject of a flood propagation computation method (Muskingum method).” Journal of Hydraulic Research, Vol. 7, pp. 205-230. https://doi.org/10.1080/00221686909500264
  13. Doorenbos, J., Pruitt, W.O., Aboukhaled, A., Damagnez, J., Dastane, N.G., Van der Berg, C., Rijtema, P.E., Ashford, O.M., and Frere, M. (1984). “Guidelines for predicting Crop Water Requirements.” FAO Irrigation and Drainage Paper, Rome.
  14. Halit Apaydin, Alper, S. Anli, and Ahmet Ozturk (2006). “The temporal transferability of calibrated parameters of a hydrological model.” Ecological Modelling, Vol. 195, pp. 307-317. https://doi.org/10.1016/j.ecolmodel.2005.11.032
  15. Jenson, S.K., and Domingue, J.O. (1988). “Extracting topographic structure from digital elevation data for geographic information system analysis.” Photogrammetric Engineering and Remote Sensing, Vol. 54, No. 11, pp. 1593-1600.
  16. Julien, P.Y., and Saghafian, B. (1991). “CASC2D Users Manual-A Two Dimensional Watershed Rainfall-Runoff Model.” Civil Engr. Report, CER90-91PYJBS-12. Colorado State University, Fort Collins.
  17. Julien, P.Y., Saghafian, B., and Ogden, F.L. (1995). “Raster-based hydrological modeling of spatiallyvaried surface runoff.” Water Resources Bulletin. AWRA, Vol. 31, No. 3, pp. 523-536. https://doi.org/10.1111/j.1752-1688.1995.tb04039.x
  18. Martz, L.W., and Jong, E.D. (1988). “CATCH: A FORTRAN program for measuring catchment area from digital elevation models.” Computers & Geosciences, Vol. 14, No. 5, pp. 627-640. https://doi.org/10.1016/0098-3004(88)90018-0
  19. Molnar, D.K., and Julien, P.Y. (2000). “Grid size effects on surface water modeling.” Journal of Hydrologic Engineering, Vol. 5, pp. 8-16. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:1(8)
  20. Moore, I.D., and Grayson, R.B. (1991). “Terrain-based catchment partitioning and runoff prediction using vector elevation data.” Water Resources Research, Vol. 27, No. 6, pp. 1177-1191. https://doi.org/10.1029/91WR00090
  21. Ogden, F.L., and Julien, P.Y. (1994). “Runoff model sensitivity to radar rainfall resolution.” Journal of Hydrology, Vol. 158, pp. 1-18. https://doi.org/10.1016/0022-1694(94)90043-4
  22. Orlandini, S., Perotti, A., Sfondrini, G., and Bianchi, A. (1999). “On the storm flow response of upland Alpine catchments.” Hydrological Processes, 13, 549-562. https://doi.org/10.1002/(SICI)1099-1085(199903)13:4<549::AID-HYP755>3.0.CO;2-S
  23. Ponce, V.M. (1986). “Diffusion wave modelling of catchment dynamics.” Journal of Hydraulic Engineering, ASCE, Vol. 112, Mo. 8, pp. 716-727. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:8(716)
  24. Ponce, V.M., and Yevjevich, V. (1978). “Muskingum-Cunge method with variables parameters” Journal of the Hydraulics Division, ASCE, Vol. 104, No. 12, pp. 1663-1667.
  25. Sharif, H.O., Ogden, F.L., Krajewski, W.F., and Xue, M. (2002). “Numerical simulations of radar rainfall error propagation.” Water Resources Research, Vol. 38, No. 8.
  26. Soil Conservation Service (1972). National Engineering Handbook, Section 4, Hydrology. U.S. Department of Agriculture, Washington D.C.
  27. Tarboton, D.G. (1997). “A new method for the determination of flow directions and upslope areas in grid digital elevation models.”Water Resources Research, Vol. 33, No. 2, pp. 309. https://doi.org/10.1029/96WR03137
  28. Vieux, B.E. (2001). Distributed hydrologic modeling using GIS, kluwer academic publishes, norwell, massachusetts. Wat Sci Tech Series, Vol. 38, p. 293.
  29. Vieux, B.E., Bralts, V.F., Segerlind, L.J., and Wallace, R.B. (1990). “Finite element watershed modeling: onedimensional elements.” Journal of Water Resources Planning and Management, Vol. 116, No. 6, pp. 803-819. https://doi.org/10.1061/(ASCE)0733-9496(1990)116:6(803)

Cited by

  1. Assessment of Radar AWS Rainrate for Streamflow Simulation on Ungauged Basin vol.44, pp.9, 2011, https://doi.org/10.3741/JKWRA.2011.44.9.721
  2. Development and Application of Diffusion Wave-based Distributed Runoff Model vol.44, pp.7, 2011, https://doi.org/10.3741/JKWRA.2011.44.7.553
  3. A Study on the Method of Calculating the Threshold Rainfall for Rainfall Impact Forecasting vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.93
  4. Debris Flow Damage Assessment by Considering Debris Flow Direction and Direction Angle of Structure in South Korea vol.11, pp.2, 2019, https://doi.org/10.3390/w11020328