• Title/Summary/Keyword: Distributed Load

Search Result 1,301, Processing Time 0.031 seconds

The Effect of the Loading Size on Displacements of Stiffened Plates with Open Ribs (재하 크기가 개단면 리브 보강판의 처짐에 미치는 영향)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.563-574
    • /
    • 2006
  • The objective of this study is to determine the effect of the loading size on displacements of stiffened plates with open ribs using the orthotropic rigidity ratio as the parameter. To analyze the displacement behavior of stiffened plates according to the loading size, a concentrated load and three types of uniform distributed loads were applied on the rib at the center of some plates. The results of the analysis of various stiffened plates show that the central displacement ratio of the distributed load to the concentrated load increased according to the decrease in the loading size, and that the ratio can be expressed as a function of the rigidity ratio for each rib space. The maximum displacement of the stiffened plate subjected to the distributed load did not appear at the center of the plate due to the local behavior, and the increasing ratio of the maximum displacement to the central displacement can be expressed as a function of the rigidity ratio for each rib space. Orthotropic plate analysis can achieve more accurate results using the proposed functions, and the application of the functions to examples of a different aspect ratio and support condition shows good accuracy. Therefore, using the functions proposed in this study, the central and maximum displacements can easily be achieved in the orthotropic plate analysis of stiffened plates subjected to the distributed load.

A Distributed Control Method based on Voltage Sensitivity Matrix in DC Microgrids for Improvement of Power Sharing Accuracy and Voltage Regulation Performance (직류 마이크로그리드의 전력 공유 정확도 및 전압 제어 성능 향상을 위한 전압 민감도 행렬 기반의 분산 제어 방법)

  • Lee, Gi-Young;Ko, Byoung-Sun;Lee, Jae-Suk;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.345-351
    • /
    • 2018
  • A distributed control method is proposed to improve the power sharing performance of bidirectional distributed generators and the voltage regulation performance of a DC bus in a DC microgrid. Voltage sensitivity analysis based on power flow analysis is conducted to analyze the structural characteristics of a DC microgrid. A distributed control method using a voltage sensitivity matrix is proposed on the basis of this analysis. The proposed method uses information received through the communication system and performs the droop gain variation method and voltage shift method without additional PI controllers. This approach achieves improved power sharing and voltage regulation performance without output transient states. The proposed method is implemented through a laboratory-scaled experimental system consisting of two bidirectional distributed generators, namely, a load and a non-dispatchable distributed generator in a four-bus ring-type model. The experimental results show improved power sharing accuracy and voltage regulation performance.

Structural Optimization based on Equivalent Static Load for Structure under Dynamic Load (동하중을 받는 구조물의 등가정하중 기반 구조최적화 연구)

  • Kim, Hyun Gi;Kim, Eui young;Cho, Maenghyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.236-240
    • /
    • 2013
  • Due to difficulty of considering dynamic load in side of a computer resource and computing time, it is common that external load is assumed as ideal static load. However, structural analysis under static load cannot guarantee the safety of structural design. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. And previously reported works to distribute equivalent static load were based on ad hoc methods. However, it is appropriate to take into account the stress constraint for the safety design. Moreover, the improper selection of loading position may results in unreliable structural design. The present study proposes the methodology to optimize an equivalent static which distributed on the primary DOFs, DOFs of the constraint elements, DOF of an external load as positions. In conclusion, the reliability of proposed method is demonstrated through a global optimization.

  • PDF

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

Load Distribution Method based on Transcoding Time Estimation on Distributed Transcoding Environments (분산 트랜스코딩 환경에서 트랜스코딩 시간 예측 기반 부하 분산 기법)

  • Kim, Jong-Woo;Seo, Dong-Mahn;Jung, In-Bum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.4
    • /
    • pp.195-204
    • /
    • 2010
  • Due to improved wireless communication technologies, it is possible to provide multimedia streaming service for mobile device clients like PDAs and cellphones. Wireless networks are serviced on low bandwidth channels and mobile devices work on limited hardware specifications. In these conditions, transcoding technologies are needed to adapt the media for streaming services to given mobile environments. To transcode from the source media to the target media for corresponding grades, transcoding servers perform transcoding jobs as exhausting their resources. Since various transcoding loads occur according to the target transconding grades, an effective transcoding load balancing policy is required among transcoding servers. In addition to transcoding process, servers should maintain QoS streams for mobile clients for total serviced times. It requires real-time requirements to support QoS for various mobile clients. In this paper, a new transcoding load distribution method is proposed. The proposed method can be driven for fair load balance between distributed transcoding servers. Based on estimated transcoding time, movie information and target transcoding bit-rate, it provides fair transcoding load distribution and also performs admission control to support QoS streams for mobile clients.

Transcoding Load Estimation Method for Load Balance on Distributed Transcoding Environments (분산 트랜스코딩 환경에서 부하 균형을 위한 트랜스코딩 부하 예측 기법)

  • Seo, Dong-Mahn;Heo, Nan-Sok;Kim, Jong-Woo;Jung, In-Bum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.9_10
    • /
    • pp.466-475
    • /
    • 2008
  • Owing to the improved wireless communication technologies, it is possible to provide streaming service of multimedia with PDAs and mobile phones in addition to desktop PCs. Since mobile client devices have low computing power and low network bandwidth due to wireless network, the transcoding technology to adapt media for mobile client devices considering their characteristics is necessary. Transcoding servers transcode the source media to the target media within corresponding grades and provide QoS in real-time. In particular, an effective load balancing policy for transcoding servers is inevitable to support QoS for large scale mobile users. In this paper, the transcoding load estimation algorithm is proposed for load balance on the distributed transcoding environments. The proposed algorithm estimates transcoding time from transcoding server information, movie information and target transcoding bit-rate. The estimated transcoding time is proved based on experiments.

Load Balancing for Distributed Processing of Real-time Spatial Big Data Stream (실시간 공간 빅데이터 스트림 분산 처리를 위한 부하 균형화 방법)

  • Yoon, Susik;Lee, Jae-Gil
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1209-1218
    • /
    • 2017
  • A variety of sensors is widely used these days, and it has become much easier to acquire spatial big data streams from various sources. Since spatial data streams have inherently skewed and dynamically changing distributions, the system must effectively distribute the load among workers. Previous studies to solve this load imbalance problem are not directly applicable to processing spatial data. In this research, we propose Adaptive Spatial Key Grouping (ASKG). The main idea of ASKG is, by utilizing the previous distribution of the data streams, to adaptively suggest a new grouping scheme that evenly distributes the future load among workers. We evaluate the validity of the proposed algorithm in various environments, by conducting an experiment with real datasets while varying the number of workers, input rate, and processing overhead. Compared to two other alternative algorithms, ASKG improves the system performance in terms of load imbalance, throughput, and latency.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

Performance Improvement using Effective Task Size Calculation in Dynamic Load Balancing Systems (동적 부하 분산 시스템에서 효율적인 작업 크기 계산을 통한 성능 개선)

  • Choi, Min;Kim, Nam-Gi
    • The KIPS Transactions:PartA
    • /
    • v.14A no.6
    • /
    • pp.357-362
    • /
    • 2007
  • In distributed systems like cluster systems, in order to get more performance improvement, the initial task placement system precisely estimates and correctly assigns the resource requirement by the process. The resource-based initial job placement scheme needs the prediction of resource usage of a task in order to fit it to the most suitable hosts. However, the wrong prediction of resource usage causes serious performance degradation in dynamic load balancing systems. Therefore, in this paper, to resolve the problem due to the wrong prediction, we propose a new load metric. By the new load metric, the resource-based initial job placement scheme can work without priori knowledge about the type of process. Simulation results show that the dynamic load balancing system using the proposed approach achieves shorter execution times than the conventional approaches.

Regional Analysis of Load Loss in Power Distribution Lines Based on Smartgrid Big Data (스마트그리드 빅데이터 기반 지역별 배전선로 부하손실 분석)

  • Jae-Hun, Cho;Hae-Sung, Lee;Han-Min, Lim;Byung-Sung, Lee;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1013-1024
    • /
    • 2022
  • In addition to the assessment measure of electric quality levels, load loss are also a factor in hindering the financial profits of electrical sales companies. Therefore, accurate analysis of load losses generated from distributed power networks is very important. The accurate calculation of load losses in the distribution line has been carried out for a long time in many research institutes as well as power utilities around the world. But it is increasingly difficult to calculate the exact amount of loss due to the increase in the congestion of distribution power network due to the linkage of distributed energy resources(DER). In this paper, we develop smart grid big data infrastructure in order to accurately analyze the load loss of the distribution power network due to the connection of DERs. Through the preprocess of data selected from the smart grid big data, we develop a load loss analysis model that eliminated 'veracity' which is one of the characteristics of smart grid big data. Our analysis results can be used for facility investment plans or network operation plans to maintain stable supply reliability and power quality.