International Journal of Computer Science & Network Security
/
제23권10호
/
pp.135-146
/
2023
An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.
Mohsin Shaikh;Irfan Ali Tunio;Syed Muhammad Shehram Shah;Fareesa Khan Sohu;Abdul Aziz;Ahmad Ali
International Journal of Computer Science & Network Security
/
제23권5호
/
pp.207-211
/
2023
Traditional methods for datamining typically assume that the data is small, centralized, memory resident and static. But this assumption is no longer acceptable, because datasets are growing very fast hence becoming huge from time to time. There is fast growing need to manage data with efficient mining algorithms. In such a scenario it is inevitable to carry out data mining in a distributed environment and Frequent Itemset Mining (FIM) is no exception. Thus, the need of an efficient incremental mining algorithm arises. We propose the Distributed Incremental Approximate Frequent Itemset Mining (DIAFIM) which is an incremental FIM algorithm and works on the distributed parallel MapReduce environment. The key contribution of this research is devising an incremental mining algorithm that works on the distributed parallel MapReduce environment.
분산형 데이터마이닝을 위해 의사결정나무 알고리즘은 분산형 협업 환경에 적합하도록 변환되어야 한다. 본 논문에서 제시된 분산형 데이터마이닝 시스템은 각각의 사이트에서 부분적인 데이터를 위한 데이터마이닝 작업을 수행할 수 있는 에이전트와 여러 에이전트들의 협업을 통해 최종적인 의사결정나무 모델을 완성할 수 있도록 에이전트들 간의 통신을 중재하는 미디에이터로 구성되어 있다. 분산형 데이터마이닝의 장점 중에 하나는 여러 사이트에 분산되어 있는 대량의 데이터를 분산 처리하므로 데이터마이닝의 소요시간을 현저하게 줄일 수 있다는 점이다. 그러나 각 사이트들에 존재하고 있는 에이전트들 간의 통신에 부하가 과도하게 걸린다면, 효율적인 시스템으로의 활용도가 낮아질 것 이다. 본 논문은 에이전트들 간에 의사결정나무 모델의 전송량을 최소로 할 수 있는 방법론에 초점을 맞추었다.
Today large corporations are constructing distributed server environment. Many corporations are respectively operating Web server, FTP server, Mail server and DB server on heterogeneous operation. However, there is the problem that a manager must manage each server individually. In this paper, we present distributed FTP server for log mining system on ACE. Proposed log mining system is based upon ACE (Adaptive Communication Environment) framework and data mining techniques. This system provides a united operation with distributed FTP server.
Data mining is an effective method of the discovery of useful information such as rules and previously unknown patterns existing in large databases. The discovery of association rules is an important data mining problem. We have developed a new parallel mining called Distributed Frequent Pattern Tree (abbreviated by DFPT) algorithm on a distributed shared nothing parallel system to detect association rules. DFPT algorithm is devised for parallel execution of the FP-growth algorithm. It needs only two full disk data scanning of the database by eliminating the need for generating the candidate items. We have achieved good workload balancing throughout the mining process by distributing the work equally to all processors. We implemented the algorithm on a PC cluster system, and observed that the algorithm outperformed the Improved Count Distribution scheme.
We envisage that grid computing environments allow us to implement distributed data mining services, that is, those applications which analyze large sets of geographically distributed databases and information using the computational power and resources of a grid environment. This paper describes an experimental framework towards such a distributed data mining approach, including design considerations and a prototype implementation. Based on the "Knowledge Grid" architecture suggested by Cannataro et al., we identify four major components - user node, broker node, data node, and computation node - and define their individual roles. For implementing the prototype, we have investigated methods for utilizing distributed resources within a grid computing environment, e.g., communication and coordination among the various resources available.
International Journal of Computer Science & Network Security
/
제21권3호
/
pp.275-286
/
2021
As a result of the vast amount of data that is geographically found in different locations. Distributed data mining (DDM) has taken a center stage in data mining. The use of mobile agents to enhance efficiency in DDM has gained the attention of industries, commerce and academia because it offers serious suggestions on how to solve inherent problems associated with DDM. In this paper, a novel DDM model has been proposed by using a mobile agent to enhance efficiency. The main idea behind the model is to use the Naive Bayes algorithm to give the mobile agent the ability to learn, compare, get and store the results on it from each server which has different datasets and we found that the accuracy increased roughly by 0.9% which is our main target.
본 논문에서는 데이터 마이닝을 위한 데이터 준비 과정에 대하여 기존의 데이터 마이닝 도구들의 효율성을 비교하고, 새로운 효율적인 데이터 준비 시스템 설계 기준을 제안하고자 한다. 지역 및 원격 데이터베이스 접근방법 이기종 컴퓨터간의 정보 교환을 기준으로 기존의 데이터마이닝 도구들의 기능을 비교하였다. 본 논문에서는 앤서트리, 클레멘타인, 엔터프라이즈 마이너, 웨카를 비교하였다. 또한, 본 논문에서는 분산 네트워크 상에서 데이터 마이닝을 위한 효율적인 데이터 준비 시스템을 위한 설계기준을 제안한다.
오늘날 인터넷은 하나의 거대한 분산 정보 서비스센터의 역할을 수행하며 여러 가지 많은 정보들과 이를 관리 운영하는 데이터 베이스 서버들은 분산된 네트워크 환경 속에서 광범위하게 존재하고 있다. 그러나 우리는 데이터 특성에 따라 입력 데이터를 처리할 서버를 결정하는데 여러 가지 어려움을 겪고 있다. 본 논문에서는 분산 환경 속에 존재하는 수많은 데이터들 가운데 신경망을 이용해 입력 데이터 패턴을 가장 효율적으로 처리할 수 있는 목적지 서버를 마이닝하는 기법과 이를 기반으로 한 지능적 데이터 마이닝 시스템 구조를 설계하였다. 그 결과로서 새로운 입력 데이터패턴이 신경망으로 구현된 동적 바인딩 방법에 따라 목적지 서버를 결정한 후 처리됨을 보였다. 이 기법은 데이터 웨어하우스, 통신 및 전력부하패턴 분석, 인구센서스 분석, 의료데이터 분석에 활용될 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권11호
/
pp.5287-5303
/
2018
Handling vast amount of data found in large transactional datasets is an obvious challenge for the conventional data mining algorithms. Addressing this challenge, our paper proposes a parallel approach for proper decomposition of mining problem into sub-problems in order to find frequent patterns from these datasets. The proposed, Pattern Mining for Large Distributed Dataset (PMLDD) approach, ensures minimum dependencies as well as minimum communications among sub-problems. It establishes a linear aggregation of the intermediate results so that it can be adapted to large-scale programming models like MapReduce. In this context, an algorithmic structure for MapReduce programming model is presented. PMLDD guarantees an efficient load balancing among the sub-problems by a specific selection criterion. Further, it optimizes the number of required iterations over the dataset for mining frequent patterns as compared to the existing approaches. Finally, we believe that our approach is scalable enough to handle larger datasets in terms of performance evaluation, and the result analysis justifies all these mentioned concerns.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.