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Abstract 
 

Handling vast amount of data found in large transactional datasets is an obvious challenge for 
the conventional data mining algorithms. Addressing this challenge, our paper proposes a 
parallel approach for proper decomposition of mining problem into sub-problems in order to 
find frequent patterns from these datasets. The proposed, Pattern Mining for Large Distributed 
Dataset (PMLDD) approach, ensures minimum dependencies as well as minimum 
communications among sub-problems. It establishes a linear aggregation of the intermediate 
results so that it can be adapted to large-scale programming models like MapReduce. In this 
context, an algorithmic structure for MapReduce programming model is presented. PMLDD 
guarantees an efficient load balancing among the sub-problems by a specific selection 
criterion. Further, it optimizes the number of required iterations over the dataset for mining 
frequent patterns as compared to the existing approaches. Finally, we believe that our 
approach is scalable enough to handle larger datasets in terms of performance evaluation, and 
the result analysis justifies all these mentioned concerns. 
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1. Introduction 

Mining of frequent patterns/itemsets and finding association among them, is a crucial area in 
the field of data mining. It can be used to discover the intricate relationship between the items 
in the large complex structured and unstructured datasets. It has a wide range of applications 
starting from a simple grocery store to a well convoluted defense system. Today, we are in the 
era of automation through the new technologies which generate a colossal amount of data and 
this is increasing exponentially. Gradually, this extensive amount of data is creating several 
new challenges for the available mining algorithms. When this enormous amount of data 
reaches to that extent that it becomes very difficult to manage using traditional database 
management system, then it is known as Big data [1]. Social networks like Facebook, Twitter, 
etc. are generating petabytes of data and the human generated data will reach about 44 
zettabytes by 2020; certainly managing this huge amount of data is a tough challenge for the 
researchers. The nature of this data can be described using a 5V [2] structure: 'V's stand for 
Volume, Velocity, Variety, Veracity, and Value. These Vs also impose challenges to the Big 
data management and information retrieval [3]. Distributed approaches provide scalable 
solutions for retrieval of relevant information from this data. 

These approaches work through storing data over a distributed storage by dividing it into 
small chunks/blocks and apply distributed processing for information retrieval from this data. 
Association mining has two intrinsic tasks: frequent itemset generation which involves 
frequency distribution calculation about each data item/object, and relationship estimation 
among them. Sequential approaches require a centralized availability of data to apply an 
iterative model for association mining problem [4,5,6]. These approaches lack in terms of 
scalability and have high I/O and communication cost. Thus, these are not sufficient to deal 
with today's Big data. Remodeling of these approaches and reducing strong dependencies [7] 
is a complex and comprehensive task. Hence, a convenient remodeling of available frequent 
pattern mining algorithms according to the comprehensive approaches is urgently required. 

A comprehensive approach, in this context, would be the distribution of one complete 
problem over a cluster where sub-tasks independently run on each node of the cluster and 
results from nodes are combined to generate the final result. This process may increase the 
performance and scalability of overall mining process. However, it raises some inescapable 
issues like inter process communication overhead, central node management, failure 
management, workload distribution, and mixing the results from the sub-problems. 

There are distributed solutions available for processing and storing data like MapReduce 
[8], Spark, [9] and Hadoop Distributed File System (HDFS) [10]. The use of MapReduce 
provides independence from memory constraints which in addition gives a prodigious amount 
of scalability. This MapReduce approach is used in several techniques for association mining. 
The major problems which exist while remodeling the sequential association mining 
algorithms are as follows: 

1) Several iterations of the MapReduce phase, which results in increasing 
communication cost, I/O, and time required for overall approach. 

2) A proper independence among the sub-problems is required for a scalable 
implementation of the distributed approach. 

3) An appropriate aggregation of the intermediate results. 
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Addressing these issues our proposed synthesized approach considers the distribution of the 
data over a cluster. Through this approach: 

1) Improvement in the iterative modeling of the MapReduce is done. 
2) Proper independence is maintained using distributed parallel counting and tree 

generation algorithm for generation of FP-Tree. 
3) The proposed approach requires no communication between the mappers, also there is 

no data exchange between the nodes of the cluster. 
4) A proper mixture model for intermediate output aggregation is proposed for the 

generation of complete result. 
Rest of the paper is organized as, section 2 discusses about the FP Growth problem, section 3 
provides the relevant work done in the mentioned area, section 4 defines the problem 
statement, section 5 elaborates the process of distributed frequent pattern mining, section 6 
explains the specific problem and solution with an example, section 7 demonstrates the 
performance evaluation and presents the experimental analysis of the proposed approach, and 
finally section 8  concludes the work. 

2. FP-Growth 
FP-Growth algorithm is a well-known algorithm for mining frequent itemsets and generation 
of association rules [12]. This algorithm completely scans the dataset twice: first, it generates 
the count for each item and second, it produces a tree which is known as FP-Tree (Frequent 
Pattern Tree). Through Recursive mining on this tree, frequent itemsets and association rules 
can be generated. Pseudo code for FP-Growth can be understood from algorithm 1. For a 
transactional dataset, each transaction is added to the FP-Tree, where, in case of first 
transaction, it is added to the tree as a branch. All subsequent transactions are then added with 
matching the prefixes. Until the prefix is matched, count of the nodes in the tree for that 
particular transaction is increased by one and the rest of the transactions is further added as a 
branch from the point of unmatched prefixes. 
 
 

 
There are some issues while mining large amount of data using FP-Growth algorithm: 

1) Volume: As the load of data is increasing, the size of the transactional database is also 
increasing. Therefore, FP-Growth needs to be modified to overcome this challenge. 

Algorithm 1  FP-Growth 
Required Di 
1. Define a counter array count [] 
2. For each transaction j in D 
3.  For each item k in transaction j 
4.   count[k]=count[k]+1 
5.  EndFor 
6. EndFor   
7. Sort the transactions according to count [] 
8. Remove the infrequent items based on minimum support value. 
9. For each transaction j in D 
10. add jth transaction to FP-Tree 
11. EndFor 
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2) Complexity: The big chunks of data can be divided into different shards and 
processed independently to reduce the computational complexity. This is also needed 
to be done in case of frequent itemset mining. So, parallel implementation of the 
FP-Growth can result in less complexity. 

3) Iterative approach: There is a need of reduction in the number of iterations required 
for generation of frequent itemset and association rules. 

The overall mining problem requires distributed count based sorting in order to maintain the 
dependency among the items. The FP-Growth algorithm follows a sequential approach and to 
remodel this algorithm in a distributed manner, a division of the problem into sub-problems is 
highly needed. Here, an effective intermediate result storage mechanism is required for 
minimizing overall communication overhead. Modeling of the algorithm into MapReduce 
programming model is also necessary to increase the scalability of overall mining process. To 
efficiently complete this remodeling process, a < key; value > based result generation and 
mixture is required. In the end, a proper aggregation of the results is essential so that the 
combined information could have the same accuracy as that of a centralized approach. 

3. Related Work 
The problem of finding frequent itemsets and discovering the significant association rules has 
been widely studied in different areas related to data mining. Two of the most prominent 
algorithms in this field are Apriori [11] and FP-Growth [12], which conventionally follow a 
sequential approach for mining frequent itemset and association rule. There is an immense 
need to remodel these algorithms in order to handle the massive amount of dataset problem in 
a distributed manner and also to adapt distributed programming model like MapReduce. 
Several implementations of Apriori have already been done; each of which goes through a 
number of iterations of the MapReduce task as long as the size of frequent itemset 
[13,14,15,16,17,18]. FP-Growth is also used with MapReduce [19,20] and Spark [21] for 
addressing the same concerned problem. Again, there are the cases where a combination of 
Apriori and FP-Growth [22] leads to better results. Tsay, Y. J et al. has proposed Frequent 
Items Ultrametric Tree (FIUT) algorithm [23] which follows a bottom-up approach as 
compared to FP-Growth algorithm and requires a lexicographic order to be maintained among 
the items. This algorithm first extracts the k-frequent itemsets which is same as in case of 
Apriori algorithm [11]. Then these k-frequent itemsets are recursively used for finding 
frequent itemsets of size less than k using the ultrametric trees. Zahra Farzanyar et al. has 
proposed Improved MapReduce Apriori Algorithm (IMRApriori) [24] which uses Apriori as 
base algorithm and extracts the frequent itemsets from the dataset. This algorithm performs a 
voting over the mappers in order to distinguish between evident frequent itemset and 
infrequent itemset. Another approach for mining frequent itemsets using MapReduce has been 
proposed by Haoyuan Li et al. in Parallel FP-Growth (PFP) algorithm [25] which prepares two 
lists: one for count maintenance and other for the grouping of  items. Grouped items can be 
processed by different processors for which group list needs to be shared among the processors. 
This algorithm requires several iterations of the MapReduce over the dataset and also puts an 
extra overhead of grouping the items. To overcome these issues Jiayi Zhou et al. has 
developed an algorithm, Tidset-Based Parallel FP-Tree (TPFP) [26], which shares the 
transaction index list (tid list) that efficiently reduces the amount of data exchange. Matteo 
Riondato et al. has implemented an approach PARMA [27]; orthogonal to the TPFP and PFP, 
which uses random sampling of the data and applies FP-Growth to produce the approximate 
results. Further, in case of continuous updating of data, new data can be added monotonously 
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to fulfil these requirements through PIFP algorithm [28], suggested by Xiaoting Wei et al. that 
performs continuous update to the FP-Tree using a revised threshold value. Sandy Moens et al. 
has proposed two approaches: first dist-Eclact and further its optimized version BiGFIM [29] 
for implementation over large datasets. In BiGFIM algorithm, construction of k-size frequent 
itemset is done in parallel using dist-Eclat, which are then used to create k-size prefix trees. 
These prefix trees are distributed to the workers (processing units in a cluster) for further 
identification of frequent itemsets independently from local data. This algorithm considers the 
frequency ordering of the dataset and also requires several iterations for finding k-size frequent 
itemset. The decision of the k value affects the overall performance of the algorithm. BiGFIM 
provides better performance than other algorithms like PFP, which is highly adopted and 
compared in the literature. 

Yaling Xun et al. has proposed FiDoop algorithm [30] that uses FIUT algorithm and 
MapReduce. FiDooP takes only three iterations of MapReduce where first two iterations are 
for creation of a set of maximal size frequent itemsets. In the third iteration of MapReduce, 
mappers decompose the maximal frequent itemsets generated in previous iterations and build 
FIU-Tree. Then, trees having the same number of items, are assigned to single reducer for 
further decomposition or information extraction. The algorithm requires itemset ordering 
which is not always present in the real time data [35,36]. Load balancing is required in the 
third iteration, as it includes the decomposition process. It is recursive in nature and can result 
in uneven distribution of load on nodes executing mappers. Although algorithm shows better 
performance than the PFP algorithm which requires multiple iteration of MapReduce. But PFP 
was proposed for query recommendation system and does not follow any specific order in the 
input query as it is hard to maintain such order in user input queries. Based on the literature 
discussed so far some problems have been identified with existing approaches that require 
immediate attention: 

1) There are problems with inter process communication between mappers. 
2) Producing the exact results as the sequential approach is also very troublesome. 
3) Number of MapReduce iterations that are required to complete the mining process. 
4) The management of the intermediate results. 

4. Distributed Frequent Pattern Mining Problem 

Mining of association rules and frequent pattern mining are cohesively bonded together. There 
are several application domains like market basket analysis, sensor networks [36] where 
mining of frequent itemset is essential for finding dependence among items (even in case of 
sensors). To make out the complete process of mining frequent itemsets and identification of 
the association rules, the following terms need to be considered. 

1) Item {i}: It is a unique entity in a dataset. 
2) Itemset {I}: A set of non-repeating items I={i1,i2, ..., in}. 
3) Transaction {T}: A set of any permutation of non-repeating items. 
4) Transactional Dataset {D}: It is a collection of transactions.  
5) Support Sup: The support for a pattern P⊂ I is the number of times P has occurred in 

the entire database.  
6) Frequent Itemset pattern: An Itemset is a frequent itemset if it occurs in a given 

database more than a threshold value. This threshold value is known as minimum 
support. 
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7) Confidence: Confidence is calculated among two itemsets e.g. I1, I2 in context of 
co-occurrence among them. Confidence of an association rule I1→ I2 is given by the 
equation below. 

1 2
1 2

1

supp( )( )
supp( )

I Iconf I I
I
∪

→ =  (1) 

A broad scenario regarding our problem formulation is to find all frequent patterns/itemsets 
from a given dataset based on a minimum support value so that association rules based on 
confidence values can be generated for these itemsets. A centralized approach considers all 
data to be available in one big chunk for iterative scanning of the data. While considering the 
challenges of Big data and its storage, distributed systems can provide a good solution as the 
data is distributed over a cluster. Consider a transactional dataset D, distributed over a 
distributed storage as D1,D2,...,Dk. Basic methodology behind the calculation of association 
rules is the conditional probability computation among the itemsets. Performing the same 
operation over a distributed environment requires different approaches, as the overall sample 
space and the entire data is partitioned across a network. The complete problem can be 
summerized as follows: 

1) Distribution of the scanning process over the complete dataset such that the results are 
same as these are in a centralized approach. 

2) Remodeling of itemset generation process in distributed manner and aggregation of 
the results.  

3) To find the frequent itemsets independently from the distributed dataset and 
aggregation of the results for global frequent itemsets. 

4) Finally, generation of the complete synthesized information which can be used for 
association rule generation. 

5. Pattern Mining for Large Distributed Datasets (PMLDD) 
The overall proposed approach of mining frequent itemsets and production of association rules 
is divided into two phases of MapReduce as shown in Fig. 1. There are exactly two iterations 
of MapReduce required to complete the proposed approach. Scanning the data includes 
transaction by transaction scan on the available input dataset which is done by the mappers and 
further mappers generate all the intermediate results which are aggregated to achieve the final 
result by the reducers. Mappers, in the first phase, form a < key; value > pair where, each key 
corresponds to the item occurred in the transactions and the value refers to its count. Different 
mappers produce these < key; value > pairs in each transaction and pass these for further 
processing to the reducers. 
 
5.1. Phase 1 
First phase includes one complete scan of input data, one iteration of mapper and reducer to 
complete this phase. Mapper and reducer strictly follow the MapReduce classical model for 
extracting the local information from available data and linearly combining that information. 
 
5.1.1 Mapper function 1 
Each mapper starts with scanning its data part Di and generates the intermediate output. 
Mapper function has a conventional application of counting which is very fast in case of 
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distributed systems. Each mapper takes part in the counting process by notifying the existence 
of an item as < key; value > pair in form of < item; 1 > as given in the algorithm 2. The 
resulting pair is written to HDFS for its availability for next stage of phase 1 
 
 
 

 
Algorithm 2  Mapper 1 
Required Di 
1. For each  item in Tj ϵ Di 
2.  write<item, 1> 
3. EndFor  
4. write<item,1> 
5. Return<item, 1> 

Algorithm 3  Reducer 1 
Required <item, 1> 
1. While new item do 
2.  count all different items 
3. EndWhile 
4. write<item, count> 
5. Return<item, count> 

 
5.1.2 Reducer function 1 
In its first scan, the reducer takes the pairs generated by the mappers as input and combines 
these pairs to get the global count for the items by summation over each < key; value > pair 
based on key's value. This global information is stored in the distributed storage pool to make 
it available to the mappers for the next phase. Algorithm 3 describes the complete phase 1 
reducer execution. 

 
Fig. 1. Two phases of proposed approach 
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5.2 Phase 2 
Even in the second phase of the proposed approach, one iteration of mapper and one iteration 
of reducer is required. Each mapper builds the conditional FP-Tree from the available dataset 
and the reducers combine these FP-Trees using the tree aggregation process. 
 
5.2.1 Map Function 2 
From the first phase, the frequency information for items is extracted. Each mapper in phase 2 
then starts scanning the transactions and performs sorting the transactions based on the 
information gathered from first phase and eliminates the infrequent items based on the 
minimum support value. Mappers use the sorted transactions for creating the conditional tree 
(FP-Tree) based on the occurrence of an item in a particular transaction. Each mapper 
constructs a local tree and writes these trees to the files over the distributed storage pool. 
Different mappers write different trees; these trees have the compressed information about the 
items and transactions in the dataset. The process of formation of trees can be understood from 
the pseudo code in algorithm 4 and 5. 

1) The referred algorithm 4 takes the subsets of primary dataset and the global count list 
as the input and creates a null tree. 

2) It selects a transaction, sort it according to the CountList and removes infrequent items. 
3) It uses insert function as described in algorithm 5 for inserting a transaction into the 

tree. 
4) Repeats the process until all transactions from dataset Di are added to the tree. 

At first, there is a null tree for each mapper in which mappers add transactions one by one to 
produce FP-Tree. In the transaction insertion process, each transaction's prefixed item is 
checked for the current children of the considered node using 4th statement of algorithm 5. If 
no similar child is found in the tree, then the complete transaction is added as a new branch in 
the tree with count of each item is set as one. If there is a similar child as the considered 
prefixed item, then the count for the item is increased by one. And recursive call to the 
function is made considering next item in the transaction and child of the currently selected 
node. This process is iteratively executed until there are transactions available in the dataset. 
 
Algorithm 4 Mapper 2 
Required Di , CountList 
1. create a null tree Tree 
2. For each Tj ϵ Di do 
3.  sort 
 transactions according to the count 
4.  remove infrequent items from Tj →Ts 
5. insert(Ts, Tree) 
6. EndFor 
7. write Tree 
8. Return Tree 
 
 

Algorithm 5 insert(T,Tree) 
Required T,Tree 
1. insert(t|T,Tree) 
2. T=t|T-t 
3. root= Root(Tree) 
4. childm= Child(root) 
5. If childm.name=t.name 
6.  childm.count=childm.count+1 
7.  insert(T, childm) 
8.  Return 
9. EndIf 
10. Child(root)=t|T 
11. Set count for each item to 1 
12. Return Tree 
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5.2.2 Reducer Function 2 
In the second phase, reducer performs the aggregation of the trees by selecting any two trees 
from the distributed storage. Reducer then combines these trees in a level-wise manner and 
stores the newly generated tree again into the distributed storage. The selection of the trees 
from the distributed storage pool is done iteratively until there is more than one tree in the 
distributed storage; the overall merging works as follows: 

1) Select two trees from the distributed storage as described in algorithm 6. 
2) Merge these trees using merge function as described in the pseudo code of algorithm 

7. 
3) Root node of each tree is selected. 
4) Each node of the second tree is compared with the child of the first tree's node. 
5) If any match is found, then count of that node is increased by adding the count of both 

the nodes and recursive call to merge() is done by making the child nodes as the root 
nodes. 
 

Algorithm 6 Reducer 2 
Required Dist_Tree_Pool 
1. While {number of trees in  
                 Dist_Tree_Pool  > 1} do 
2.  Select any two trees  
                        from Dist_Tree_Pool 
3.  Select root node of the trees 
                        as node1 and node2 
4.  merge (node1,node2) 
5.  write the resultant tree  
                       to distribute storage 
6. EndWhile 

Algorithm 7 Merge 
Required Treei, Treej 
1. nodei=rooti 
2. nodej=rootj 
2. For each childm of nodej do 
4.  If childm is also child of nodei 
5.  find corresponding childn from nodei  
6.  merge(childn, childm) 
7.  childn.count=childn.count  + childm.count 
8.  EndIf 
9.  Else add childm to nodei as another child 
10. EndFor  
11. Return Tree 

 
The complete two phased proposed approach ends with a single tree left in the distributed 
storage. Each write operation in the algorithms  can be of two types, first, we can manage the 
trees in memory or second, we can use the Newick Tree [32] structure for storing these trees to 
files. Newick Tree format is a widely used representation of the trees and a scalable 
implementation is available as ETE toolkit [33] which is widely used for GNOME analysis 
and visualization [37]. The tree can be stored as a tree object over distributed storage with each 
node's count information. This final tree has the sketched information about the whole input 
data. The resultant tree can be used for mining the frequent itemsets and further for association 
rules mining by simply traversing over the tree. 

 
6. Example Problem 

 
Simply applying FP-growth algorithm and discovering association rules can be understood 
using the examples in the literature [12]. To realize the process of mining the frequent itemsets 
and computation of association rules using proposed approach, consider the example dataset 
as detailed in Table 1. In this context, we explain the process of local tree generation and 
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combining the intermediate trees to build the complete tree. In the first phase, division of the 
complete dataset takes place as shown in tables D1, D2, D3. Then each mapper scans the 
transactions of the subset dataset and generates the key value combinations. These 
combinations are then processed by the reducers to estimate the global counts. This 
information is shared using the distributed storage and made available for second phase of the 
mappers and reducers. In the second phase, each mapper sort the transactions and starts 
generating the local FP-Tree. Considering the minimum support to 30%, the items I1, I6, I7, I8 
got ignored. After that the sorting by each mapper is done independently for each transaction 
in the subset dataset. 
 
Table 1. Transaction Dataset  D and its 
division D1, D2, D3 

D 
Transaction ID Transaction  

T01 I1 I2 I4 
T02 I3 I2 I5 
T03 I4 I5 I9 I6 
T04 I4 I9 I11 I7 
T05 I2 I11 
T06 I2 I8 

D1 
Transaction ID Transaction  

T01 I1 I2 I4 
T02 I3 I2 I5 

D2 
Transaction ID Transaction  

T03 I4 I5 I9 I6 
T04 I4 I9 I11 I7 

D3 
Transaction ID Transaction  

T05 I2 I11 
T06 I2 I8 

 

 
 
 

 
Fig. 2. Tree combining process 

 

 
Each mapper starts forming the partial trees and stores these trees in the HDFS. Three 
independent trees by three mappers are created in our example problem. During second phase, 
the reducers perform the aggregation of trees by selecting two trees at a time from distributed 
pool. Then carry out the merging operation on those trees as shown in Fig. 2. When there is no 
tree left for merging, the final tree is created and can be used for finding the association rules 
by analyzing the tree. 

 
7. Performance Evaluation and Discussion 

 
7.1 Experimental Setup 
Proposed approach requires a distributed storage and data processing environment; for this, a 
five node Hadoop cluster has been setup to validate the proposed approach. There are many 
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physical and logical modules in a Hadoop cluster, but Namenode, Datanode, and Secondary 
Namenode are its main components. The cluster follows a star topological architecture where 
nodes are connected through a switch directly with each other, each node has; Ubuntu 16.04 as 
operating system, Intel(R) Core(TM)i3-32320 processors, 6 GB of RAM and Hadoop 2.6.4 
installed on it. The number of mappers is 4 and replication factor is set to 2. Our proposed 
parallel approach is applied using MapReduce. Each mapper independently executes 
according to the proposed approach and produces the results which are further combined by 
the reducer functions. 
 
7.2 Analysis 
Generation of FP-Tree requires insertion of each pruned transaction in the tree. The overall 
time required to add a new transaction T in FP-Tree is O(|freq(T)|), where freq(T) is the set of 
frequent items. For the complexity analysis of the proposed approach, we consider the number 
of items is N, maximum length of any transaction is l, number of mappers is k, number of data 
partitions is p. Then the time complexity of the entire approach can be estimated as 𝑂(𝑙 ∗ 𝑝

𝑘
∗

𝑁 𝑙𝑜𝑔𝑁). Further analysis of the proposed approach is done in the following manner: 
1) The time required by different phases of the proposed approach to process the data. 
2) The percentage time spent in each phase of the algorithm. 
3) Visualization of the proposed algorithm and the intermediate results. 
4) Analysis of the proposed approach with the existing approaches. 
5) Scalability analysis of the proposed approach. 
6) Analysis based on the tree selection policy for aggregation. 

The datasets considered in these analyses are Mushroom [31] dataset and IBM synthetic 
dataset generator [34], which has been used in previous works [29]. Firstly, we have used 
Mushroom dataset for 1,2, and 3, which contains 119 number of items and 8124 number of 
transactions. Fig. 3 shows the time required by different stages of proposed approach. This 
analysis is done by varying the support value, so that, size and number of trees generated can 
be varied. 

 

 
Fig. 3. Time required by each phase of PMLDD based on different support values 

The amount of time required by the mappers and reducers to complete the first phase is almost 
constant for varying values of the minimum support. But the time required by the second phase 
of the algorithm is high for low values of minimum support due to the increased levels and 
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degree of nodes in the tree. To visualize these trees, we have used ETE toolkit [32,33] which is 
highly used for GNOME analysis. The overall scenario of the aggregation process can be 
visualized using Fig. 4(a, b, c, d), which shows the projection of intermediate FP-Trees. Each 
node in the tree represents an item as shown in Fig. 5 (circled area of Fig. 4(a)). The 
aggregation process results in a complete tree as shown in Fig. 4(e) 
 
 

 
(4a) 

 

 
(4b) 

 

 
(4e) 

 
(4c) 

 
(4d) 

Fig. 4. Visualization of the aggregation process for Mushroom dataset using PMLDD approach 
 
 

 
Fig. 5. Edges of the Mushroom 1 tree 

 
Further analysis for scalability and comparison with the existing approaches has been done 
using synthetic dataset which contains 1000 number of items and 1,000,000 number of 
transactions. We have analyzed the percentage time spent by each mapper and reducer in each 
phase; Fig. 6 shows this analysis. Maximum amount of time required by the proposed 
algorithm is in the conditional tree generation and aggregation process. Based on the varying 
value of the support count, the number of trees generated by the mappers varies significantly. 
It affects the amount of time required by the reducers to process the aggregation process. The 
ratio of the time required by the different stages of the algorithm is analyzed as shown in the 
Fig. 6.We have compared the proposed approach with the available approaches. The proposed 
approach gives a significant performance improvement as shown in Fig. 7. 
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Fig. 6. Percentage of time spent by PMLDD in 
each phase of the MapReduce 

 
Fig. 7. Proposed approach compared with the 
existing approaches based on the minimum 
support values scaled by  103 

 
7.3 Scalability Analysis 
Scalability analysis has been done for performance evaluation using a scalability factor 
SFactusing equation 2.  

T
Fact

T

FS
C

=     (2) 

 
FT is the time required in first case in which only two cores are available for mining process. 

This time will act as the base for comparison. CT is the time required in all subsequent cases 
when we continuously increase the number of available cores. An ideal scenario is that the 
SFact should be increased in the same ratio as the number of cores are increasing. The actual 
scenario is different from ideal as shown in Fig. 8. It shows the analysis of the complete 
process with varying number of cores. Synthetic dataset has been used for this  process and ten 
million transactions have been used for testing the scalability of the system. Analysis shows 
that a good amount of scalability can be achieved using the proposed approach. 
 

 
Fig. 8. Scalability analysis of PMLDD with 
increasing number of cores in the cluster 

 
Fig. 9. Tree selection process analysis of 
different reducer processes in tree aggregation  
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7.4 Load Balancing 
Aggregation process analysis has been done using two tree selection criteria. Selection of the 
trees for aggregation can drastically affect the performance of the mining process. The 
compressed trees generated by the mappers are of varying heights and sizes. The selection of 
trees can be of two types: random selection of trees and First In First Out (FIFO). These 
selections result in different processing time required by the reducers to merge these trees. As 
shown in Fig. 9, the amount of time required by the reducers for completing the aggregation 
process follows a zigzag shape for random selection of the trees and some better smooth shape 
in case of FIFO. This analysis considers the average time required by the reducers to perform 
the aggregation process. The x-axis shows the reducer process and y-axis shows the time 
required by that reducer for tree aggregation. 

The overall analysis shows that proposed approach works well over the distributed storage. 
It shows significant performance improvement over the existing approaches. 

 

8. Conclusion 
This paper presents a PMLDD approach in order to deal with the inherent problem of data 
mining in terms of managing large transactional datasets and finding frequent patterns. While 
ensuring minimum dependence among the sub-problems, the overall approach requires two 
MapReduce iterations and hence reduces the database scanning load over the distributed 
storage. An efficient result aggregation scheme is presented and tested over different datasets. 
The method is ample scalable to be adapted for distributed programming model and to achieve 
the scalability in result aggregation phase, a linear aggregation of the results is done. Obtained 
results validate the efficacy of PMLDD concept in terms of reduction in the amount of time 
with existing approaches. In future, we would like to extend our work through its application 
level implementation into the emerging technology like Internet of Things (IoT) for event 
based pattern mining. 
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