• Title/Summary/Keyword: Distributed Congestion Control

Search Result 39, Processing Time 0.038 seconds

Distributed Rate and Congestion Control for Wireless Mesh Networks

  • Quang, Bui Dang;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.916-922
    • /
    • 2007
  • Wireless networks (WNs) are developed and applied widely in a lot of areas. Now, a new generation of wireless networks is coming, and that is Wireless Mesh Network (WMN). At present, there are not so many researches which deal on this area. Most researches are derived from Mobile Ad hoc Networks (MANET) and WNs. In WMNs, there are some applications that require real-time delivery. To guarantee this, rate control and congestion control are needed. This problem leads to optimization issue in transport layer. In this paper, we propose a mathematical model which is applied in rate and congestion control in WNMs. From this model, we optimize rate and congestion control in WMNs by maximizing network utility. The proposed algorithm is implemented in distributed way both in links and sources.

Deep Reinforcement Learning-Based C-V2X Distributed Congestion Control for Real-Time Vehicle Density Response (실시간 차량 밀도에 대응하는 심층강화학습 기반 C-V2X 분산혼잡제어)

  • Byeong Cheol Jeon;Woo Yoel Yang;Han-Shin Jo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.379-385
    • /
    • 2023
  • Distributed congestion control (DCC) is a technology that mitigates channel congestion and improves communication performance in high-density vehicular networks. Traditional DCC techniques operate to reduce channel congestion without considering quality of service (QoS) requirements. Such design of DCC algorithms can lead to excessive DCC actions, potentially degrading other aspects of QoS. To address this issue, we propose a deep reinforcement learning-based QoS-adaptive DCC algorithm. The simulation was conducted using a quasi-real environment simulator, generating dynamic vehicular densities for evaluation. The simulation results indicate that our proposed DCC algorithm achieves results closer to the targeted QoS compared to existing DCC algorithms.

CCDC: A Congestion Control Technique for Duty Cycling WSN MAC Protocols

  • Jang, Beakcheol;Yoon, Wonyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3809-3822
    • /
    • 2017
  • Wireless Sensor Networks hold the limelight because of significant potential for distributed sensing of large geographical areas. The radio duty cycling mechanism that turns off the radio periodically is necessary for the energy conservation, but it deteriorates the network congestion when the traffic load is high, which increases the packet loss and the delay too. Although many papers for WSNs have tried to mitigate network congestion, none of them has mentioned the congestion problem caused by the radio duty cycling of MAC protocols. In this paper, we present a simple and efficient congestion control technique that operates on the radio duty cycling MAC protocol. It detects the congestion by checking the current queue size. If it detects the congestion, it extends the network capacity by adding supplementary wakeup times. Simulation results show that our proposed scheme highly reduces the packet loss and the delay.

Cross-Layer Resource Allocation in Multi-interface Multi-channel Wireless Multi-hop Networks

  • Feng, Wei;Feng, Suili;Zhang, Yongzhong;Xia, Xiaowei
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.960-967
    • /
    • 2014
  • In this paper, an analytical framework is proposed for the optimization of network performance through joint congestion control, channel allocation, rate allocation, power control, scheduling, and routing with the consideration of fairness in multi-channel wireless multihop networks. More specifically, the framework models the network by a generalized network utility maximization (NUM) problem under an elastic link data rate and power constraints. Using the dual decomposition technique, the NUM problem is decomposed into four subproblems - flow control; next-hop routing; rate allocation and scheduling; power control; and channel allocation - and finally solved by a low-complexity distributed method. Simulation results show that the proposed distributed algorithm significantly improves the network throughput and energy efficiency compared with previous algorithms.

Distributed Mobile Streaming Service using Grouping-based Fuzzy Reference Scheme (그룹화 기반의 퍼지 참조 기법을 이용한 분산 모바일 스트리밍 서비스)

  • Jeong, Taeg-Won;Lee, Chong-Deuk
    • Journal of Digital Contents Society
    • /
    • v.9 no.4
    • /
    • pp.533-541
    • /
    • 2008
  • In distributed mobile systems, the congestion control and disconnection problems are current major issues. This paper proposes a grouping-based fuzzy reference streaming method to improve the performance of systems supporting distributed mobile transactions. The proposed method resolves transaction requests issued by mobile clients using the GS interface. In the paper disconnection problems are resolved efficiently using transaction read and update for improved streaming service. Experimental results show that the proposed method outperforms the other existing methods significantly.

  • PDF

Congestion Control Method of Area of Interest in Distributed Virtual Environment (분산가상환경에서 참여자 관심영역의 혼잡도 조절기법)

  • 유석종
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.550-558
    • /
    • 2004
  • Previous researches on scalability problem of distributed virtual environment (DVE) have been mainly focused on spatial partitioning of area of interest (AOI). Congestion phenomena by avatar groups in AOI have been neglected relatively However, AOI congestion is highly related to scalability of DVE because it exhausts system resources such as network bandwidth and rendering time, and could be a bar to perform collaboration among participants. In this paper, this will be defined as the problem that must be solved for the realization of the scalable DVE, and a model will be proposed to measure and control congestion situation in AOI. The purposes of the proposed model are to prevent high density of participants in AOI, and to protect stable collaboration in DVE. For evaluation of the performance it is compared with a previous method by defining the resource cost model which is dynamically activated to AOI congestion.

  • PDF

Performance analysis of call admission control in ATM networks considering bulk arrivals services (벌크 입력과 서비스를 고려한 ATM망에서 호 수락 제어에 관한 성능 분석)

  • 서순석;박광채
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.675-683
    • /
    • 1996
  • CAC, UPC, NPC, cell level QoS and congestion control is required to assign efficiently channels's BW and to prevent networks from congestion. In the CAC algorithm, each user defines characteristics of input traffic when channels are set up and network based on this parameters determines the acception or rejection of the required BW. The CAC control mechanism is classified into the centralized BW allocation mechanism and the distributed BW Allocation mechanism according to the function and position of CAC processor allocating BW. In this paper, in contrast with esisted the distributed BW allocation mechanism which assumes the required BW of input traffic as constant, we assume input traffic & serices as bulk probability distribution in order to analyze performance more precisely.

  • PDF

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

A Study of ABR Traffic Control in ATM Networks by Integrating EFCI and ER Modes (ATM 네트워크상에서 EFCI와 ER을 결합한 ABR 트래픽 제어에 관한 연구)

  • 김종은;우현구;김봉기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.98-104
    • /
    • 2000
  • One of the main features of ABR service is the employment of a rate-based flow control mechanism, and congestion control plays an important role in the effective and stable operation of ATM networks Feedback from the network switches to the end system gives users the information necessary to adjust transmission rates appropriately according to the current networks load. Congestion controls by feedback mechanism are classified as EFCI and ER mode. We analyze the performance of EFCI and ER and propose a new ABR traffic control strategy by integrating EFCI and ER modes to improve the traditional traffic control. Through the distributed simulation. the performance improved by the proposed control strategy is analyzed.

  • PDF

Distributed Load Balancing with Handovers over Mobile Cellular Networks Using Supervisory Control (셀룰러 망에서 관리 제어를 이용한 분산적 부하 균등 방법)

  • Byun, Hee-Jung;Yang, Yoon-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.714-719
    • /
    • 2011
  • This paper proposes a scheme for distributed load balancing in mobile communication networks based on supervisory control framework. Using load information exchanged with neighboring cells, the "supervisors" that reside in the base stations distribute load among cells by controlling handover parameters in a distributed manner. The supervisors are designed so that the load difference among neighboring cells are kept under a pre-defined value. Results from systematic analysis and simulation indicate that our scheme effectively balances traffic load among cells and reduces call blocking rate of the overloaded cells.