• Title/Summary/Keyword: Distorted and unbalanced grid

Search Result 22, Processing Time 0.022 seconds

A Fast and Robust Grid Synchronization Algorithm of a Three-phase Converters under Unbalanced and Distorted Utility Voltages

  • Kim, Kwang-Seob;Hyun, Dong-Seok;Kim, Rae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1101-1107
    • /
    • 2017
  • In this paper, a robust and fast grid synchronization method of a three-phase power converter is proposed. The amplitude and phase information of grid voltages are essential for power converters to be properly connected into the utility. The phase-lock-loop in synchronous reference frame has been widely adopted for the three-phase converter system since it shows a satisfactory performance under balanced grid voltages. However, power converters often operate under abnormal grid conditions, i.e. unbalanced by grid faults and frequency variations, and thus a proper active and reactive power control cannot be guaranteed. The proposed method adopts a second order generalized integrator in synchronous reference frame to detect positive sequence components under unbalanced grid voltages. The proposed method has a fast and robust performance due to its higher gain and frequency adaptive capability. Simulation and experimental results show the verification of the proposed synchronization algorithm and the effectiveness to detect positive sequence voltage.

Comprehensive Coordinated Control Strategy of Virtual Synchronous Generators under Unbalanced Power Grid

  • Wang, Shuhuan;Han, Li;Chen, Kai
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1554-1565
    • /
    • 2019
  • When grid voltage is unbalanced, the grid-connected output current and power of Virtual Synchronous Generators (VSGs) are distorted and quadratic. In order to improve the power quality of a grid connected to a VSG when the grid voltage is unbalanced, a comprehensive coordinated control strategy is proposed. The strategy uses the positive sequence current reference command obtained by a VSG in the balanced current control mode to establish a unified negative sequence current reference command analytical expression for the three objectives of current balance, active power constant and reactive power constant. In addition, based on the relative value of each target's volatility, a comprehensive wave function expression is established. By deriving the comprehensive wave function, the corresponding negative sequence current reference value is obtained. Therefore, the VSG can achieve the minimum comprehensive fluctuation under the premise that the three targets meet the requirements of grid connection, and the output power quality is improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.

A Rejection of Harmonic Ripples for d-q Transformation (d-q 변환에서의 고조파 맥동 제거)

  • Choi, Nam-Yerl;Lee, Chi-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.83-87
    • /
    • 2015
  • This paper presents a simple notch filter, which is so suitable for three-phase unbalanced and distorted power line. In the d-q synchronous transformation, three-phase unbalanced and distorted voltages generate lots of ripple voltages on d-q axes. The ripples make disturbances on controllers such as PLL of phase tracking. Unbalanced state makes ripple of double the frequency of power line. Odd harmonics 5th and 7th on the line make even 4th and 6th ripples on d-q axes due to the rotating reference frame, respectively. Cascaded two comb filters, delay lines 1/4T and 1/8T, are adopted for the ripple rejection. The filter rejects harmonics 2nd, 4th, 6th, 10th and so on. They are very effective to remove the ripples of both unbalance and distortion. The filter, implemented by two FIFOs on an experimental system, is adopted on a PLL controller of power line phase tracking. Through the simulation and experimental results, performance of the proposed comb filter has been validated.

A Hybrid Filtering Stage Based Quasi-type-1 PLL under Distorted Grid Conditions

  • Li, Yunlu;Wang, Dazhi;Han, Wei;Sun, Zhenao;Yuan, Tianqing
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.704-715
    • /
    • 2017
  • For three-phase synchronization applications, the synchronous reference frame phase-locked loop (SRF-PLL) is probably the most widely used technique due to its ease of implementation and satisfactory phase tracking performance under ideal grid conditions. However, under unbalanced and distorted grid conditions, its performance tends to worsen. To deal with this problem, a variety of filtering stages have been proposed and used in SRF-PLLs for the rejection of disturbance components at the cost of degrading the dynamic performance. In this paper, to improve dynamic performance without compromising the filtering capability, an effective hybrid filtering stage is proposed and incorporated into the inner loop of a quasi-type-1 PLL (QT1-PLL). The proposed filtering stage is a combination of a moving average filter (MAF) and a modified delay signal cancellation (DSC) operator in cascade. The time delay caused by the proposed filtering stage is smaller than that in the conventional MAF-based and DSC-based PLLs. A small-signal model of the proposed PLL is derived. The stability is analyzed and parameters design guidelines are given. The effectiveness of the proposed PLL is confirmed through experimental results.

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

A Novel Phase Locked Loop for Grid-Connected Converters under Non-Ideal Grid Conditions

  • Yang, Long-Yue;Wang, Chong-Lin;Liu, Jian-Hua;Jia, Chen-Xi
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • Grid synchronization is one of the key techniques for the grid-connected power converters used in distributed power generation systems. In order to achieve fast and accurate grid synchronization, a new phase locked loop (PLL) is proposed on the basis of the complex filter matrixes (CFM) orthogonal signal generator (OSG) crossing-decoupling method. By combining first-order complex filters with relation matrixes of positive and negative sequence voltage components, the OSG is designed to extract specific frequency orthogonal signals. Then, the OSG mathematical model is built in the frequency-domain and time-domain to analyze the spectral characteristics. Moreover, a crossing-decoupling method is suggested to decouple the fundamental voltage. From the eigenvalue analysis point of view, the stability and dynamic performance of the new PLL method is evaluated. Meanwhile, the digital implementation method is also provided. Finally, the effectiveness of the proposed method is verified by experiments under unbalanced and distorted grid voltage conditions.

New Control Strategy for Three-Phase Grid-Connected LCL Inverters without a Phase-Locked Loop

  • Zhou, Lin;Yang, Ming;Liu, Qiang;Guo, Ke
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.487-496
    • /
    • 2013
  • The three-phase synchronous reference frame phase-locked loop (SRF-PLL) is widely used for synchronization applications in power systems. In this paper, a new control strategy for three-phase grid-connected LCL inverters without a PLL is presented. According to the new strategy, a current reference can be generated by using the instantaneous power control scheme and the proposed positive-sequence voltage detector. Through theoretical analysis, it is indicated that a high-quality grid current can be produced by introducing the new control strategy. In addition, a kind of independent control for reactive power can be achieved under unbalanced and distorted grid conditions. Finally, the excellent performance of the proposed control strategy is validated by means of simulation and experimental results.

Three-Parallel System Operation and Grid-Connection Technique for High-Power Wind Turbines using a PMSG (PMSG를 이용한 풍력 발전 시스템의 3병렬 운전과 계통 연계 기술)

  • Lee, Sang-Hyouk;Jung, Hea-Gwang;Lee, Kyo-Beum;Choi, Se-Wan;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.296-308
    • /
    • 2010
  • This paper proposes a design of the three-parallel converter system and grid-connection technique for a PMSG based wind turbine systems. The back-to-back converter of the PMSG based wind turbine system is directly connected to the grid so that both the power devices and the filters are needed to have large power ratings. The three-parallel converter configuration can reduce the required power ratings of the devices and filters. However, the three-parallel converter can cause circulating currents. These circulating currents can be suppressed by sellecting proper inner inductance at each leg. An LCL filter design is used to meet the THD regulations. The latent resonance caused by the LCL filter is compensated by an active damping method without additional loss. The decline of the power quality caused by the unbalanced and distorted grid voltages is also compensated with an additional compensation algorithm. The simulation and experimental results show that the proposed system and compensation methods are effective for the wind turbine systems.

Output Voltage Regulation for Harmonic Compensation under Islanded Mode of Microgrid

  • Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.464-475
    • /
    • 2017
  • This study examines a P+multi resonant-based voltage control for voltage harmonics compensation under the islanded mode of a microgrid. In islanded mode, the inverter is defined as a voltage source to supply the full local load demand without the connection to the grid. On the other hand, the output voltage waveform is distorted by the negative and zero sequence components and current harmonics due to the unbalanced and nonlinear loads. In this paper, the P+multi resonant controller is used to compensate for the voltage harmonics. The gain tuning method is assessed by the tendency analysis of the controller as the variation of gain. In addition, this study analyzes the slight voltage magnitude drop due to the practical form of the P+multi resonant and proposes a counter method to solve this problem by adding the PI-based voltage restoration method. The proposed P+multi resonant controller to compensate for the voltage harmonics is verified through the PSIM simulation and experimental results.