• Title/Summary/Keyword: Distant-water fisheries

Search Result 86, Processing Time 0.019 seconds

A Study on International Disputes with Korean Distant-Water Sea Fisheries (한국의 원양어업관련 국제분쟁 사례연구)

  • 김민종
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.1
    • /
    • pp.69-85
    • /
    • 2003
  • The primary objective of this thesis is to study, case by case, the international disputes for fishing rights between fishing nations and costal states never imagined till the introduction of the UN Convention on the Law of the Sea adopted in 1982 and came into effect in November 16, 1994, which governs the high seas and EEZ in a new manner. Such a study is to provide help in the understanding on this new marine system and how to deal with. This is addressed by the perspectives of disputes (a) in the high seas between fishing nations having traditionally enjoyed the principle of the freedom of the high seas and costal states, (b) in the EEZ between fishing nations and costal states possessing the exclusive jurisdiction over living marine resources and sovereign rights for determining allowable catch and the surplus in its EEZ. The article can be divided into four main parts. First, both the general principles of the settlement of international disputes, and the nature and procedures described in the UNCLOS are introduced. Second, it gives cases of tuna long-liner, North Pacific trawler and squid jigger occurred in the coastal states EEZ, and analyses the problem in both terms of its background and final judgment. It further describes the possible issues in case it depends on the International Tribunal for the Law of the Sea for its settlement. Third, closely tied to above, important points such as the right of hot pursuit, prompt release of vessel and crew, and the limits of cooperation with costal states inspector on board fishing vessels are considered mostly based on the UNCLOS, Bilateral Agreement and UNIA. Finally, the article concludes as follows ; The need for broad analyses on the nature of international suits and legal system for the settlement, to win the case before the International Tribunal for the Law of the Sea or coastal states court, is really acknowledged. However, considering the lack of previous studies about it, it is preferably recommended that governmental efforts for making legal standards to cover the judicial costs, for helping industry out of becoming bankrupt.

  • PDF

Two anthozoans, Entacmaea quadricolor (order Actiniaria) and Alveopora japonica (order Scleractinia), host consistent genotypes of Symbiodinium spp. across geographic ranges in the northwestern Pacific Ocean

  • Chang, Soo-Jung;Rodriguez-Lanetty, Mauricio;Yanagi, Kensuke;Nojima, Satoshi;Song, Jun-Im
    • Animal cells and systems
    • /
    • v.15 no.4
    • /
    • pp.315-324
    • /
    • 2011
  • The actiniarian sea anemone, Entacmaea quadricolor, and the scleractinian coral, Alveopora japonica, host symbiotic dinoflagellates belonging to the genus Symbiodinium (Freudenthal). We studied the host-symbiont specificity of these two anthozoan hosts in the northwestern Pacific Ocean. Symbionts within the two hosts were identified using partial large subunit (LSU) ribosomal DNA (rDNA) and complete internal transcribed spacers (ITS) 1 rDNA regions. The host, E. quadricolor, was identified using the partial LSU rDNA molecular marker. Genetic analysis showed that E. quadricolor only harbors dinoflagellates belonging to subclade C1/3 of the genus Symbiodinium. Moreover, no genetic variation was detected among the symbionts of E. quadricolor within the study region (Korea and Japan), even though the two distant sites were separated by more than 1000 km, at collection depths of 1 m in shallow and 13-16 m in deep water. Whilst scleractinian corals host multiple Symbiodinium clades in tropical waters, A. japonica, sampled over a wide geographical range (800 km) within the study region, only hosts Symbiodinium sp. clade F3. The high specificity of endosymbionts in E. quadricolor and A. japonica within the northwestern Pacific Ocean could be accounted for because symbiotic dinoflagellates within the host anemones appear to be acquired maternally, and the Kuroshio Current might affect the marine biota of the northwestern Pacific. However, the consistency of the symbiotic relationships between these two anthozoan hosts and their endosymbionts could change after climate change, so this symbiotic specificity should be monitored.

The Exploitation of World Fishery Resources for 10 Years under the New Regime in the Sea (신해양질서 10년후 세계어업자원 이용동향)

  • 이장욱;허영희
    • The Journal of Fisheries Business Administration
    • /
    • v.23 no.1
    • /
    • pp.43-87
    • /
    • 1992
  • In this paper, state of exploitation of world fishery resources after 10 years under the new regime in the sea, called the era of exclusive economic zone (EEZ) expending up to a 200 nautical miles from coastal line, was reviewed to determine effect from establishing EEZ in the world fishery production and its export/import volume based on the fishery statistics annually published by the Food and Agriculture Organization (FAO) of United Nation. The world total production from marine living resources had a trend showing a waned increase during 1970's when most of coastal states were translated into the reality of EEZ. From mid-1980's onwards, it increased rapidly, reaching about 85 million tons . Such increase in production was basically from the Pacific Ocean, accounting for more than 60% of the world total production. Fishing areas where showed increase in the production after the new regime in the sea were the southwestern Atlantic (FAO area 41) , the eastern Indian (FAO area 57) and the whole fishing areas in the Pacific except the eastern central Pacific (FAO area 77). Increase in the production from distant-water fishing countries came from the regions of the southwest Atlantic (FAO area 41) and the southwest Pacific (FAO area 81) . The production from coastal states was up from the regions of the eastern Indian (FAO area 57) , the northwest and northeast Pacific (FAO areas 61 and 67) and the southeast Pacific (FAO area 87) . It was likely that the exploitation of the fishable stocks was well monitored in the areas of the northwest Atlantic (FAO area 21) , the eastern central Atlantic (FAO area 34) and the northeast Pacific (FAO area 67) through appropriate management measures such as annual harvest level, establishment of total allowable catch etc. The marine fisheries resources that have made contribution to the world production, despite expansion of 200 EEZ by coastal states, were sardinellas, Atlantic cod, blue whiting and squids in the Atlantic Ocean : tunas which mainly include skipjack, yellowfin and bigeye tuna, croakers and pony fishes in the Indian Ocean : and sardine, Chilean pilchard, Alaska pollock, tunas (skipjack and yellowfin tuna) , blue grenadier and blue whiting including anchoveta in the Pacific Ocean. It was identified that both fishery production and its export since introduction of the new regime in the sea were dominated by such coastal states as USA, Canada, Indonesia, Thailand, Mexico, South Africa and Newzealand. But difficulties have been experienced in the European countries including Norway, Spain, Japan and Rep. of Korea. Therefore, majority of coastal states are unlikely to have yet undertaken proper utilization as well as rational management of marine living resources in their jurisdiction during the last two decades. The main target species groups which led the world fishery production to go up were Alaska pollock, cods, tunas, sardinellas, chub and jack mackerel and anchoveta. These stocks are largely expected to continue to contribute to the production. The fisheries resources which are unexploited, underexploited and/or lightly exploited at present and which will be contributed to the world production in future are identified with cephalopods, Pacific jack mackerel and Atlantic mackerel, silver hake including anchovies. These resources mainly distribute in the Pacific regions, especially FAO statistical fishing areas 67, 77 and 87. It was likely to premature to conclude that the new regime in the sea was only in favour of coastal states in fishey production.

  • PDF

Modelling Algae Transport in Coastal Areas with Marine Afforestation (바다숲 조성해역의 해조류 포자 확산모델링)

  • Cho, Jae-Kweon;Lim, Young-Soo;Hong, Do-Ung;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • To arrange effectively artificial reefs for marine afforestation, tidal currents were analyzed by numerical experiments, and particle tracking based upon tidal currents were carried out to clarify the path of algae spore. The experiments were carried out by EFDC (Environmental Fluid Dynamics Code), and water column was vertically divided 10 layers. Tidal current patterns showed to be affected by main current at outside of study area, and circle currents of two were observed from analysis of residual currents. Particle tracking were experimented for 15 days at 2 installation places in which artificial reefs for marine afforestation would be deployed. According to the results of particle tracking experiment, particle movement at St.1 showed belt type along coastal line, and St.2 showed ellipse type at 300~500 m distant from coastal line. It suggest that artificial reefs for marine afforestation should be installed belt zone at station of St.1 and ellipse zone at St.2. Modelling algae transport was also tested to account for local dispersion of algae spore due to the suspended materials.

The Distribution of Catch by Korean Tuna Purse Seiners in the Western Pacific Ocean (서부태평양(西部太平洋)에서 조업(操業)한 한국(韓國) 다랑어 선망어선(旋網漁船)의 어획량분포(漁獲量分布))

  • Kim, Seon-Woong;Kim, Jin-Kun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.7 no.2
    • /
    • pp.182-200
    • /
    • 1995
  • Thirty two vessels of the Korean purse seiner had been operated in the Western Pacific Ocean for mainly skipjack tuna, Katsuwonus pelmis LINNAEUS and yellowfin tuna, Thunnus albacares BONNATERRE from January to December in 1991. Among them, fourteen vessels were chosen for this research. During the year their daily operated vessels totalled 4,153 vessels, their total casting net were 2,982 times, in caught 1,798 times, and their total catch was 106,300 M/T. We investigate the distribution of their catch by species, by body size, and by surfance water temperature, and also investigate the distribution of their catch by month and section of the sea, where the sections are separated by 30' of longitude and latitude from the monthly operated sea. We summarize these as follows : 1. The rate of catch by species is 75r/o skipjack tunas, 22.3% yellowfin tunas, and 2.7% bigeye and other tunas. 2. Of the caught skipjack tunas, those of weight 2.0~10kg are most and 68%, those of 1.5~8kg are 11.6%, and those of 3.0~8kg are 9.9%. Of the caught yellowfin tunas, those of weight 5~50kg and 10~50kg are most and 23.1%, and 28.3% respectively, those of 20~50kg are 15.8%, weight 30~50kg are 12.5%, and weight 2~50kg are 9.7%. 3. On the distribution of catch by surface water temperature, 49% of catch are taken between $29.0^{\circ}C$ and $29.4^{\circ}C$, 37% are taken between $29.5^{\circ}C$ and $29.9^{\circ}C$, and about 6% are taken between $28.5^{\circ}C$ and $28.9^{\circ}C$, but very little, only about 1% are taken below $28.4^{\circ}C$ and above $30.5^{\circ}C$. 4. On the distribution of catch by month and section of sea, skipjack tunas are most caught 10,618M/T in August and 10,412M/T in September in the section of Lat. $3^{\circ}{\sim}6^{\circ}S$ and Long. $174^{\circ}E{\sim}176^{\circ}W$, caught much 8,825M/I' in June and 8,057M/T in January in section of Lat. $1^{\circ}S{\sim}3^{\circ}N$ and Long. $142^{\circ}{\sim}151^{\circ}$E, but caught very little in May, November and December in the costal area of New Guinea. Yellowfin tunas are mostly caught 4,070M/T in June in the section of Lat. $0^{\circ}{\sim}4^{\circ}$N and Long. $142^{\circ}{\sim}151^{\circ}$E, and caught much over 2,000M/T in February~April and October~December in the section of coastal area and near islands, but caught very little in distant water area.

  • PDF

Warm Water Circulation and its Origin by Sea Level Fluctuation and Bottom Topography (해수면변화와 해저지형에 의한 난류수의 순환과 그 기원)

  • PARK Ig-Chan;OH Im Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.677-697
    • /
    • 1995
  • The analysis of long- period sea level variations with tidal record data around Korea, Japan, and Russia shows that about half of the variations are due to atmospheric influences. The sea level variation by water movements is the largest in the coasts along the Tsushima Current, and becomes smaller in the distant areas. It suggests that the sea level varications are related with the Tsushima Current. The effect of sea level variations to ocean circulation has been studied with a numerical model allowing barotropic sea level fluctuations, like the result with GCM (Semtner) model by Pang et al.(1993), the present model also shows that waters basically flow along isobaths over the last China Sea after geostyophic adjustment around Taiwan. However, barotropic sea level fluctuation makes the basic circulation in the Yellow Sea, which waters flow into the central Yellow Sea and out along the west coast of the Korean Peninsula. Besides this, barotropic sea level fluctuation makes long period waves over the shelf area as the Kuroshio varies. By the waves, the basic circulation in the Yellow Sea is disturbed, so that the flow pattern of oppositely flowing into the Yellow Sea along the west roast of the Korean Peninsula appears. In the Yellow Sea circulation, it seems that northwest winds strengthen the basic circulat ion In winter, and southeast winds strengthen the disturbed circulation in summer. Another point appeared by the long period wave is that the Tsushima Current possibly originates in different areas. There have been two opposing argues on the area in which the Tsushima Current originates the southwest sea of Kyushu Island and the adjacent sea of Taiwan. Through this study, we found that both of them seem to be important areas for the origin of the Tsushima Current, and one of them is possibly strengthened by long period waves. The long period waves given by the variation of the Kuroshio Current in the adjacent sea of Taiwan propagate to the Korea Strait as forced waves. The wave continuously propagates to the last Sea through the eastern channel, but reflects in the western channel due to bottom topography. The reflected waves propagate southwestward along the last China Sea as free waves and determine the sea level variations with forced waves.

  • PDF