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The actiniarian sea anemone, Entacmaea quadricolor, and the scleractinian coral, Alveopora japonica, host symbiotic
dinoflagellates belonging to the genus Symbiodinium (Freudenthal). We studied the host�symbiont specificity of
these two anthozoan hosts in the northwestern Pacific Ocean. Symbionts within the two hosts were identified using
partial large subunit (LSU) ribosomal DNA (rDNA) and complete internal transcribed spacers (ITS) 1 rDNA
regions. The host, E. quadricolor, was identified using the partial LSU rDNA molecular marker. Genetic analysis
showed that E. quadricolor only harbors dinoflagellates belonging to subclade C1/3 of the genus Symbiodinium.
Moreover, no genetic variation was detected among the symbionts of E. quadricolor within the study region (Korea
and Japan), even though the two distant sites were separated by more than 1000 km, at collection depths of 1 m in
shallow and 13�16 m in deep water. Whilst scleractinian corals host multiple Symbiodinium clades in tropical waters,
A. japonica, sampled over a wide geographical range (800 km) within the study region, only hosts Symbiodinium sp.
clade F3. The high specificity of endosymbionts in E. quadricolor and A. japonica within the northwestern Pacific
Ocean could be accounted for because symbiotic dinoflagellates within the host anemones appear to be acquired
maternally, and the Kuroshio Current might affect the marine biota of the northwestern Pacific. However, the
consistency of the symbiotic relationships between these two anthozoan hosts and their endosymbionts could change
after climate change, so this symbiotic specificity should be monitored.
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Introduction

Symbiotic dinoflagellates belonging to the genus

Symbiodinium are unicellular algae that occur as endo-

symbionts in many hundreds of marine invertebrate

species (Taylor 1974; Trench and Blank 1987; Rowan

and Powers 1991b). Symbioses between cnidarians

and endosymbiotic dinoflagellates of the genus

Symbiodinium are especially widely known in shallow

subtidal and intertidal areas of tropical oceans. The

endosymbionts translocate photosynthetically fixed

carbon for the hosts’ respiration, growth and reproduc-

tion, and help to make host skeleton with carbonate

calcification fixation (Iglesias-Prieto and Trench 1994;

Davy et al. 1997). On the other hand, the hosts provide

a safe shelter to their symbiotic algae from direct

sunlight and predators. They have emerged as a potent

biogeochemical force, serving physically and biologi-

cally to structure and stabilize shallow-water marine

reef ecosystems (Taylor 1983; Hoegh-Guldberg and

Salvat 1995).

These endosymbiotic dinoflagellates are taxonomi-

cally described using molecular methods. DNA sequen-

cing of the ribosomal small subunit (SSU) (Carlos et al.

1999), the partial large subunit (LSU) (Pawlowski et al.

2001; Pochon et al. 2001), and the internal transcribed

spacers (ITS1 and 2) and 5.8S rDNA region (LaJeu-

nesse 2001; van Oppen et al. 2001) revealed a diverse

clade of Symbiodinium sp. The D1 and D2 region of

LSU and ITS1 rDNA are well-resolved markers to

identify Symbiodinium as clades A, B, C, D, E, F and G

(Baker 2003; Rodriguez-Lanetty 2003).
The traditional view that symbiotic marine inverte-

brates host homogeneous algal populations is well

known (Schoenberg and Trench 1980; Rowan and

Powers 1991a, b). However, many researchers have

shown that some species of symbiotic marine inverte-

brates contain more than one type of endosymbiotic

dinoflagellate (Rowan 1998). Baker (1999) reported that

38 of 107 species (36%) of scleractinian corals contained

multiple Symbiodinium clades in the Great Barrier
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Reef (GBR). Hosting multiple symbiont species may

guarantee symbioses under changeable and extreme

conditions, and may supply an evolutionarily advanta-

geous strategy (Saunders and Muller-Parker 1996).

Korean waters contain dinoflagellates of Sym-

biodinium sp. clade A within the actiniarians,

Anthopleura japonica, Anthopleura kurogane and

the scleractinian Dendrophyllia sp., dinoflagellates of

Symbiodinium sp. clade C within the actiniarian

Heteractis sp., and dinoflagellates of Symbiodinium

sp. clade F within Alveopora japonica (Rodriguez-

Lanetty et al. 2000). In this study, endosymbiotic

dinoflagellates associated with the Korean and

Japan anthozoan hosts � Alveopora japonica and

Entacmaea quadricolor � were studied for their degree

of specificity.
The ‘giant’ sea anemone, E. quadricolor, is one of

the most widely distributed Actiniidae within the Indo-

Pacific Ocean (Dunn 1981) and is a very popular sea

anemone species in the aquarium trade. Its distribution

extends from the warm waters of the Red Sea to the

Indonesian Archipelago, and extends across latitudes

to the subtropical waters of both the Ryukyu Archipe-

lago (Japan) in the northern hemisphere and the

eastern/western Australian seaboards in the southern

hemisphere. Entacmaea quadricolor plays a variety of

important ecological roles. At a macro level, this sea

anemone hosts a number of marine animals (ectosym-

bionts), including the obligate symbiotic anemone-

fishes and at least seven species of caridean shrimps

(Allen 1975; Dunn 1981). Moreover, at a micro level,

this sea anemone hosts photosynthetic unicellular

dinoflagellates, no bigger than 13 mm in diameter, but

living in high concentrations in the gastroderm cells of

the host. The eggs of host sea anemones contain an

abundance of endosymbiotic dinoflagellates at spawn-

ing (Scott and Harrison 2007). Host anemones absorb

most of the ammonia produced by the resident fish,

and endosymbiotic dinoflagellate photosynthesis drives

ammonia uptake (Roopin et al. 2008).
Alveopora japonica is a small poritid scleractinian

coral occurring in a subtropical zone from Japan to the

southern part of Korea (Song 1991; Veron 1992) in

the northwestern Pacific Ocean. Endosymbionts within

A. japonica help to build its skeleton with their symbiotic

products. The species is a hermaphroditic brooder that

releases planulae containing symbiotic dinoflagellates

from September to October (Harii et al. 2001).

The purpose of this study is to identify host�
symbiont specificity within the northwestern Pacific

Ocean. We studied the genetic diversity and specificity

of symbiotic dinoflagellates associated with the two

common anthozoan hosts, the scleractinian A. japonica

and the actiniarian E. quadricolor, in Korea and Japan.

Materials and Methods

Study sites and sample collection

We collected 10�15-cm-diameter samples of E.

quadricolor (Figure 1A) from three locations in the

northwestern Pacific Ocean (Figure 2). Five speci-

mens were collected from Natto-ura (34838?35??N,

137847?14??E) and from Kogane-zaki (34850?15??N,

138845?26??E) on the central eastern coast of Honshu

Island, Japan, and six specimens were collected from

Moonsum (126838?56??N, 33813?43??E) on the south

coast of Jeju Island, South Korea. At Natto-ura and

Kogazane-zaki, the anemones were found at a depth of

1 m, whereas at Moonsum anemones were collected

at depths between 13 and 16 m. We collected speci-

mens more than 3 m apart. The annual range in

seawater temperature was 14.1�30.18C at Natto-ura

and Kogane-zaki and 15.8�22.78C at Moonsum. A.

Figure 1. Anthozoan hosts associated with symbiotic dino-

flagellates. A. Entacmaea quadricolor. B. Alveopora japonica.
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japonica coral samples 5�10 cm in diameter (Figure 1B)

were collected from four locations in the northwestern

Pacific Ocean. Specimens of A. japonica were collected

from Aitsu (n �7) (32818?01??N, 130810?08??E), Akaiwa

(n �6) (32818?07??N, 129858?01??E) and Satsuki (n �5)
(34810?50??N, 130800?30??E) on the western coast of

Honshu Island, Japan, and Moonsum (n �5) on the

south coast of Jeju Island (Korea). The annual range in

seawater temperature was 6.1�24.48C at Aitsu, Akaiwa

and Satsuki and 15.8�22.78C at Moonsum. All speci-

mens were collected and preserved in 99% ethanol.

DNA extraction

Preserved samples were washed in distilled water to

remove all ethanol and then macerated in 2 mL DNAB

buffer (EDTA and Tris-base) to form a slurry. We

randomly excised 1 mg of tissue from the bodies of the

anemones and five or six polyps from the coral colonies
for DNA extraction. Tissue slurries were incubated in

1% SDS at 658C for 1 h followed by digestion with

proteinase K (Sigma) in a final concentration of

0.5 mg/mL at 398C for 8 h. DNA was extracted from

the digestion in two steps using phenol-chloroform

(25:24 v/v) and chloroform-isoamyl alcohol (24:1 v/v).

DNA was precipitated at 08C by the addition of

3 M sodium acetate (pH 5.2) and cold isopropanol
(1:10 v/v). The precipitate was washed with 70%

ethanol, dried and resuspended in 50 mL of sterile

MQ water and stored at 708C.

Amplification of LSU and ITS1 rDNA from symbiotic
dinoflagellates

The symbiotic dinoflagellates were genetically identi-

fied using the ribosomal DNA regions, LSU and ITS1.

The variable domains D1 and D2 of LSU rDNA

were amplified using the Symbiodinium-specific primer

set TohaF: 5?�CCT CAG TAA TGG CGA ATG AAC
A�3?, and TohaR: 5?�CCT TGG TCC GTG TTT CAA

GA�3? (Loi 1998). The ITS1 rDNA region was

amplified using another ‘zooxanthella-specific’ primer

designed by Bui et al. (2000): forward (its-dino) 5?�
GTG TAT TAT TCG GAC TGA CG�3? and the

universal reverse (ITS4): 5?�TCC TCC GCT TAT TGA

TAT GC�3?.
All PCR reactions contained 0.4 mg of template

DNA, 10 mL of 10�PCR buffer (1 M Tris-HCL,

pH 8.3), 6 mL of 25 mM MgCl2, 1.5 mM total

dNTP, 30 pmol of each primer and 0.5 mL of Taq

polymerase (5 unit/mL) in a total volume of 100 mL.

Both rDNA regions were amplified using a DNA

thermal cycler (PCR express, Hybaid) with the

following profile: 948C for 1 min, 658C (28S rDNA)

and 558C (ITS1 rDNA) for 2 min, and 728C for 3
min (30 cycles).

Figure 2. The sampling sites and current system. A, Jeju Island, Korea; B, Aitsu, Akaiwa, Satsuki, Japan; C, Natto-ura, Kogane-

zaki, Japan.
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Amplification of LSU rDNA from E. quadricolor

hosts

The partial LSU rDNA region from the hosts was

amplified using the following anthozoan-specific pri-

mers designed by Chen et al. (1995): forward primer,

No. 1: 5?�GGC GAC CCG CTG AAT TCA AGC

ATA T�3?, and reverse primer: 5?�GCT TTG GGC

TGC AGT CCC AAG CAA CCC ACT C�3?.
All PCR reactions contained 0.4 mg of template

DNA, 10 mL of 10�PCR buffer (1 M Tris-HCL,

pH 8.3), 6 mL of 25 mM MgCl2, 1.5 mM total dNTP,

30 pmol of each primer and 0.5 mL of Taq polymerase

(5 unit/mL) in a total volume of 100 mL. Both rDNA

regions were amplified using a DNA thermal cycler

(PCR express, Hybaid) with the following profile: one

cycle at 958C for 3 min, four cycles at 948C (30 s), 508C
(1 min), and 728C (2 min), and 25 cycles at 948C (30 s),

578C (1 min), and 728C (2 min).

Sequence identification and phylogenetic analysis

The PCR products were sequenced directly using

GFXTM PCR kits (Amersham Pharmacia Biotech

Inc.). The sequence was determined in both directions

by the dye-primer technique using an ABI 377 auto-

mated DNA sequencer. The symbiont genotype se-

quences (28S and ITS1 rDNA), one in A. japonica, and

two in E. quadricolor, were lodged in the GenBank

database under the accession numbers HQ668059-72

and HQ668079-82. The E. quadricolor genotype se-

quences (LSU rDNA), one each from Jeju Island in

Korean waters and Natto-ura and Kogane-zaki in

Japanes waters, were lodged in the GenBank database

under the accession numbers HQ668073-8.

Symbiont LSU rDNA sequences were also aligned

with one another and with other representative rDNA

sequences found in GenBank. These sequences were

from Symbiodinium sp. clade A (GenBank accession

no. AF170140), B (AF170152) (Baker 1999), subclade

C1 (FJ529523), C3 (FJ529524) (Sampayo et al. 2009),

F3 (AJ291521) (Pawlowski et al. 2001), F3 (AJ830911)

(Pochon et al. 2006), the symbionts of Heteractis sp.

(AY186623) (Rodriguez-Lanetty et al. 2003), and

Gymnodinium beii (accession no. AF060900) (Wilcox

1998). Symbiodinium sp. clade A, B and Gymnodinium

beii were used as an outgroup.

ITS1 sequences were aligned with other related

sequences obtained in GenBank (through Fasta Search)

from the following endosymbionts: Symbiodinium

sp. clade A (accession no. AF427467) (Santos et al.

2002), B (AF360555) (Santos et al. 2001), subclade

C1 (AB259647) (Ono et al. 2010), C1 (EU074892)

(Thornhill et al. 2007), C2 (AF3805570) (van Oppen

et al. 2001), C3 (Sampayo et al. 2009) and Symbiodinium

sp. subclade F3 (AJ291521 and AJ291522) (Pawlowski

et al. 2001), and Symbiodinium goreauii (accession no.

AF333515) (LaJeunesse 2001). Symbiodinium sp. clade

A and B were used as an outgroup.

Host LSU rDNA sequences were aligned to deter-

mine genetic distances between the samples and for

comparison with other rDNA sequences from two

related species of the family Actiniidae, order Actiniar-

ia, in the GenBank database (Anemonia viridis, acces-

sion no. U69685, Anthopleura dixoniana, no. U69686
and Stichodactyla tapetum, no. U69687) (Chen et al.

1995). We also included a sequence of E. quadricolor

from a specimen collected on the eastern coast

of Australia (accession no. U69687) (Chen et al.

1995). Anemonia viridis, Anthopleura dixoniana, and

Stichodactyla tapetum were used as an outgroup.

Sequences were aligned using CLUSTAL X

(Thompson et al. 1997). Modeltest v3.7 (Posada

and Crandall 1988) was used to identify the best model

of DNA evolution for each of our data sets using
maximum likelihood (ML) analysis. Modeltest v3.7

was used to find the optimal model of DNA substitu-

tion for ML construction and suggested the

GTR�G�I model as the best-fit model for the 28S

and ITS rDNA dataset. The ML method was then

performed with a heuristic search and random addition

of sequences as implemented in PAUP 4.0b10 (Swofford

2002), with a starting tree obtained via stepwise

addition of taxa, and then swapped using the tree

bisection reconnection (TBR) algorithm. One thousand

bootstrap replicates were used to estimate the statistical
support for each major clade in the consensus tree. An

ML tree, based on the 28S rDNA of Symbiodinium sp.,

was developed with the selected GTR�G�I model in

PAUP 4.0b10 (Swofford 2002), using the following

likelihood settings determined from the above Mod-

eltest: base frequencies A�0.24390, C�0.19630,

G�0.29490, T�0.26490; base substitution rates

AC�0.64251, AG�2.32874, AT�0.45733, CG�
0.32290, CT�4.79480, GT�1.00000; assumed pro-

portion of invariable sites�0.0995760; and gamma
distribution shape parameter�0.656640. An ML tree,

based on ITS rDNA of Symbiodinium sp., was devel-

oped with the selected GTR�G�I model in PAUP

4.0b10 (Swofford 2002), using the following likelihood

settings determined from the above Modeltest: base

frequencies A�0.19800, C�0.21880, G�0.27770,

T�0.30550; base substitution rates AC�1.06412,

AG�2.83484, AT�1.07551, CG�0.53787, CT�
3.94220, GT�1.00000; assumed proportion of invari-

able sites�0.000000; and gamma distribution shape

parameter�1.768303. The nodes were considered sig-
nificantly robust if the bootstrap values were �95%

(Felsenstein 1985). Maximum parsimony (MP) trees

were constructed by using 100 repetitions of random
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sequence additions of taxa. Starting trees were obtained

by stepwise addition and branches were swapped using

the TBR option. Support for branches in the MP trees

was tested by bootstrap analysis with 1000 replicates.

Results

No diversity of endosymbiotic Symbiodinium sp. within
E. quadricolor and A. japonica

The genetic diversity of endosymbionts in the anthozo-

ans E. quadricolor and A. japonica based on the partial

LSU (455 bp) and ITS1 (214 bp) rDNA region is

shown in Figure 3. All the endosymbiont sequences

associated with E. quadricolor grouped in a monophy-

letic group showed no genetic variation at all regardless

of different collection sites (Korea and Japan) and

depth (1 and 13�16 m). This symbiont clade was

phylogenetically related to the symbiotic dinoflagellate

Symbiodinium sp. subclade C1/3. The other reference

sequences from Symbiodinium sp. in clades A, B and F

grouped in separate clusters.

All the endosymbionts associated with A. japonica

grouped in a single clade showed no genetic difference

based on ITS rDNA regardless of where they were

collected at Jeju Island, Korea, and in Japan. This

symbiont clade was phylogenetically related to the

symbiotic dinoflagellate Symbiodinium sp. subclade

F3 (GenBank Acc. Num. AJ291521 and AJ830911)

(Figure 3A, B). Three Symbiodinium genotypes (differ-

ing by one and three pair bases) were detected in

association with the coral A. japonica using LSU

rDNA regions. Genotype AJ-Jeju was found in the

samples from locations in the southern Korean Sea,

genotype AJ-Sat and AJ-Ait-Aka were found in the

samples from western Japanese waters. These three

Figure 3. Maximum likelihood and maximum parsimony trees of LSU rDNA (A) and ITS1 rDNA (B) sequences of symbiotic

dinoflagellates living within two anthozoans. Sample names starting with Eq and AJ represent symbiont sequences from the host

Entacmaea quadricolor and Alveopora japonica. Within samples, ‘Ait’ refers to location Aitsu, ‘Aka’ to location Akaiwa, ‘Sat’ to

location Satsuki, ‘Jeju’ to location Jeju Island, ‘Nat’ to location Natto-ura, and ‘Kog’ to location Kogane-zaki. Numbers (1�7)

represent the individual number. Sequences from Symbiodinium sp. clades A, B, subclades C1, C2, C3 and F3, and two symbionts

associated with the actiniidae Heteractis sp. were used as reference sequences within the Phylogram. Numerals above the branches

mean the percentage of 1000 bootstrap replications supporting each node. Bootstrap indices under maximum likelihood and

parsimony are shown at each node (ML/MP).
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Symbiodinium genotypes were phylogenetically related

to the symbiotic dinoflagellates in subclade F3.

Host LSU rDNA

The maximum likelihood tree of the LSU rDNA

sequences of E. quadricolor is shown in Figure 4. The

LSU rDNA sequence of the host, E. quadricolor,

from Korean and Japanese samples showed very little

genetic difference (less than 0.6%) within and between
them, which suggests that all these samples belong to

the same sea anemone species, E. quadricolor (Table 1).

The reference sequences from the same species obtained

from a sample collected in the Great Barrier Reef,

Australia (GBR) showed it to be phylogeneti-

cally related to the Japanese and Korean sequences

(Figure 4). However, comparisons with another LSU

rDNA sequence from E. quadricolor collected in the

GBR (Chen et al. 1995) showed a higher genetic
difference of between 3.15% and 3.45% (Table 1). The

other reference sequences of LSU rDNA sequences

from the other anemone species (Anemone viridis

and Anthopleura dixionia) grouped in separate clusters

within the phylogenetic tree and showed pairwise

differences over 4.5% to those of Japan/Korea

E. quadricolor sequences.

Discussion

Using the ITS1 rDNA marker, which can classify eight

subclades of Symbiodinium sp. clade C (Sampayo et al.

2009), we found that the Symbiodinium endosymbionts

of E. quadricolor in the northwestern Pacific (Korean

and Japanese waters) are of subclade C1/3. These

symbionts were strongly related phylogenetically to

the Symbiodinium sp. of clade C1/3 that was observed

in Heteractis sp. They belong to the same order of
Actiniaria and are distributed at the same habitat at

Jeju Island, Korea (Rodriguez Lanetty et al. 2003) and

in E. quadricolor at Kyushu, Japan (Ono et al. 2010).

Even though Symbiodinium species of subclade C1/3

were known to be host ‘generalists’ (LaJeunesse 2005),

these symbionts were only found in Heteractis sp. and

E. quadricolor in Korean waters.

No genetic variation was detected among the
samples from Honshu Island, Japan, and Jeju Island,

Korea, even though these two distinct geographical

areas were separated by more than 1000 km, and the

collection depths were different. Sea anemone hosts

from both sites in Japan were sampled at a depth of

1 m, whereas the samples from the Korean site came

from depths between 13 and 16 m. The annual range in

seawater temperature at the Japanese sampling sites
(14.1�30.18C) was greater than that at the Korean site

Figure 4. Maximum likelihood and parsimony tree of

LSU rDNA sequences from Entacmaea quadricolor hosts.

Sequences from three other actiniidae were used as out-

groups. Samples are from Korea and Japan (see Figure 2).

Within Japanese samples, ‘N’ refers to location Natto-ura,

and ‘K’ to location Kogane-zaki. Bootstrap indices under

maximum likelihood and parsimony are shown at each node

(ML/MP).

Table 1. Pairwise sequence difference of 28S rDNA among samples of Entacmaea quadricolor from Japan, Korea, and Australia,

and several other actiniidae species used as references.

Korea Japan-N Japan-K Australia Anemonia viridis

Anthopleura

dixoniana

Korea 0 0.30 0.18 3.15 5.41 7.66

Japan-N 0.60 0.48 3.45 5.71 7.96

Japan-K 0.36 3.33 5.58 7.84

Australia 0 4.50 7.21

A. viridis 0 5.86

A. dixoniana 0
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(15.8�22.78C). Even though Symbiodinium lineages

have been shown to exhibit distinct local depth

zonation patterns within the same host species (Rowan

et al. 1997; LaJeunesse 2002), our E. quadricolor

samples, obtained at different depths and from waters

with different temperature ranges, were only associated

with Symbiodinium spp. subclade C1.

The scleractinian coral, A. japonica, harbors sym-

bionts belonging to Symbiodinium in clade F. More

specifically, the coral endosymbionts resolved in sub-
clade F3 were originally represented by endosym-

bionts associated with foraminiferans in the Red Sea

(Rodriguez-Lanetty 2003). The affinity of A. japonica

for this type of endosymbiont seems to span a wide

geographical range (800 km) exposed to the Kuroshio

Current within temperate environments in the north-

western Pacific Ocean. This evidence confirms the high

affinity that A. japonica has for subclade F3 symbionts

over a wide geographical range within temperate

environments of the northwestern Pacific Ocean.
In other studies carried out within smaller geogra-

phical areas, symbiont differentiation within the same

host species has been reported (Baker 1999; Loh et al.

2001). However, most of these studies were carried out

in tropical waters where many coral species seem to

establish a nonstable (or more flexible) association with

symbiotic dinoflagellates (Baker 2001), and where

horizontal transmission of symbionts (i.e. acquired

from surrounding water) is a common mechanism of

zooxanthellae acquisition (Stat et al. 2008). Coral

species may change symbionts or may host multiple
symbionts at different depths or at different geographic

locations on the reef. Caribbean scleractinian corals,

Montastraea annularis and M. faveolata, are associated

with Symbiodinium clades A, B, C and D depending on

the depth � clades A, B and D shallow water (0�6 m)

and clade C deep water (3�14 m) (Rowan and

Knowlton 1995; Rowan et al. 1997; Toller et al.

2001). Anthopleura elegantissima hosts two species of

Symbiodinium that vary in their distribution along the

Pacific coast of North America, with northern popula-
tions containing Symbiodinium clade B and southern

populations hosting mixtures of Symbiodinium clades B

and E (LaJeunesse and Trench 2000). Within tropical

waters, many of these symbiotic relationships are

known to be unstable when exposed to environmental

change (Baker 2001; Toller et al. 2001). Cnidarians may

expel the symbionts in the presence of various environ-

mental stimuli, including changes in water temperature,

decreased salinity and high levels of sunlight (Steen and

Muscatine 1987; Muscatine et al. 1991). The phenom-

enon of bleaching, or loss of symbiotic dinoflagellates,
is of global concern in coral reefs because it indicates a

high degree of stress in the ecosystem (Jokiel and Coles

1990). Under extreme environmental changes, some

host species lose their endosymbionts and recover by

the acquisition of new endosymbiont partners (Toller

et al. 2001).

On the other hand, in temperate waters,

anthozoan�symbiotic dinoflagellate symbioses seem

to be more stable, and the mechanism of maternal

symbiont transmission appears to be predominant

(Muller-Parker and Davy 2001; Davy and Turner

2003). Davy et al. (1997) pointed out that a predomi-

nance of vertical transmission (maternally) of zoox-
anthellae at high latitudes could relate to a scarcity of

potential donors and selection against hosts with

horizontal (indirect) transmission mechanisms. E.

quadricolor and A. japonica already contain endosym-

biotic dinoflagellates at the larval stage (Harii et al.

2001; Scott and Harrison 2007). In our study, the high

conspecificity of endosymbionts in E. quadricolor and

A. japonica within the geographical area studied

(temperate waters) could be because the symbionts

within the host anemones appear to be acquired
maternally (vertical transmission). Sprung and Delbeek

(1997) have documented the presence of zooxanthellae

in embryos immediately after being brooded by female

anemones of E. quadricolor. Likewise, during asexual

reproduction, new anemone clones are always pro-

vided, before division, with a full set of zooxanthellae

from the mother colony (Sprung and Delbeek 1997).

Corals that transmit their symbionts maternally (ver-

tical transmission) are associated with specific sym-

bionts, but corals that obtain their symbionts from the

environment (horizontal transmission) may host var-
ious types of symbiont (Barneah et al. 2004). Host E.

quadricolor LSU rDNA sequences from Korean and

Japanese samples showed very little genetic difference

(less than 0.6%) within and between them, which

suggests that all these samples belong to the same sea

anemone species. Comparison with another LSU

rDNA sequence from E. quadricolor collected in the

GBR (Chen et al. 1995), however, showed a genetic

difference of 3.25%. Populations of E. quadricolor in

the GBR and nearby localities in the southwestern and
Indo-Pacific Ocean might have been isolated and

genetically unconnected with populations in the north-

western Pacific Ocean, such as those from the Ryukyu

Archipelago, Korea Strait and Honshu Island. This

isolation might have caused a remarkable genetic

differentiation in evolutionary time between the north-

ern and southern populations within the Pacific Ocean.

Although it seems, based on the current oceano-

graphic features of the northwestern Pacific Ocean,

that the anthozoan hosts and symbionts from the

Japanese sites are not directly connected to populations
found in Korean waters, both geographical areas are

connected to the southern source population, in the

north of the Philippines, by the main ocean current, the
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Kuroshio (Xu and Su 1997). This current brings water

from the Philippines through the Ryukyu Islands and

then splits into two northern extensions: one that flows

through the Korea Strait, and the other that flows

along the east coast of Japan (Figure 4). The Tsushima

warm current flows through the Korea Strait and

reaches Jeju Island and Aitsu, Akaiwa and Satsuski,

at the eastern part of Honshu Island, Japan. Moreover,

the main Kuroshio Current reaches Natto-ura,

Kogane-zaki at Honshu Island, Japan. We hypothesize

that those identical symbionts found in E. quadricolor

and A. japonica at Japanese and Korean sites have

passed maternally from generation to generation, from

populations that originally came from southern sub-

tropical areas in the north of the Philippines. In other

words, the endosymbionts residing in most of the E.

quadricolor and A. japonica within our study area in the

northwestern Pacific may represent a mega clone from

a single symbiont genotype.

Coral Pocillopora sp., containing Symbiodinium

clade D, are abundant in Panama reefs after ENSO

(El Niňo-Southern Oscillation) events; however, coral

colonies that contained clade C bleached severely after

thermal change (Baker et al. 2004). After many years,

colonies containing clade D had become dominant on

these reefs in Panama. Clade C Symbiodinium sp. are

predominant in the western Indian Ocean, but clade D

Symbiodinium sp. are more successful in the turbid,

high-temperature conditions of the northeastern In-

dian Ocean (LaJeunesse et al. 2010). However, the

relationship between the two hosts, E. quadricolor and

A. japonica, and endosymbiotic dinoflagellates within

the hosts is highly specific in this study.
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