본 논문에서는 초광대역 (Ultra-wideband, UWB) 시스템에서 실내 위치 측위를 위한 새로운 거리 추정 기법을 제안한다. 제안하는 기법은 딥러닝 기법 중 하나인 순환 신경망 (RNN)을 기반으로 한다. 순환신경망은 시계열 신호를 처리하는데 유용한데 UWB 신호 역시 시계열 데이터로 볼 수 있기 때문에 순환신경망을 사용한다. 구체적으로, UWB 신호가 IEEE 802.15.4a 실내 채널모델을 통과하고 수신된 신호에서 순환신경망 회귀를 통해 송신기와 수신기 사이의 거리를 추정하도록 학습한다. 이렇게 학습된 순환신경망 모델의 성능은 새로운 수신신호를 이용하여 검증하며 기존의 임계값 기반의 거리 추정 기법과도 비교한다. 성능지표로는 제곱근 평균추정에러 (root mean square error, RMSE)를 사용한다. 컴퓨터 모의실험 결과에 따르면 제안하는 거리 추정 기법은 수신신호의 신호 대 잡음비 (signal to noise ratio, SNR) 및 송수신기 사이의 거리와 상관없이 기존 기법보다 항상 월등히 우수한 성능을 보인다.
Demand for high-rising building has arisen. However, its maintenance is usually executed by labour. It could have a severe problem. We proposed a gondola robot to solve it. In this paper, we designed a height estimation sensor for this gondola. It is consist of pan-tilt unit, ARS sensor, and laser sensor. The pan-tilt unit keeps the laser sensor to indicate the gravity direction by referencing the ARS. The laser sensor's range is vertical distance from gondola to ground. However, if there is an obstacle under the gondola, the distance includes its height. To filter it out, we apply a Kalman filter for the height estimation. If the estimated height is changed extremely, the filter decides that there is an obstacle. Then, it remembers the height of obstacle. Other extreme changes of height estimations are reflected. The experimental results using the proposed sensor system show detail flow of the height estimation.
본 논문은 3차원 발 자세를 추정하기 위한 효과적 형상 기술자를 제안하였다. 처리 시간을 단축시키기 위하여 특수 제작된 3차원 발 모형을 2차원 투영하여 발 형상 데이터베이스를 구축하고, 3차원 자세 요약정보를 메타 정보로 추가한 2.5차원 영상 데이터베이스를 구성하였다. 그리고 특징 공간 크기가 작고 다른 형상 기술자에 비하여 자세 추정 성능이 뛰어난 수정된 Centroid Contour Distance를 제안하였다. 제안된 기술자의 성능을 분석하기 위하여, 검색 정확도와 시공간 복잡도를 계산하고 기존의 방식들과 비교하였다. 실험 결과를 통하여 제안된 기술자는 특징 추출 시간과 자세 추정 정확도면에서 기존의 방식들보다 효과적인 것으로 나타났다.
With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.
Fire localization is a key mission that must be preceded for an autonomous fire suppression system. Although studies using a variety of sensors for the localization are actively being conducted, the fire localization is still unfinished due to the high cost and low performance. This paper presents the modeling and simulation of the fire localization estimation using Bayesian estimation to determine the probabilistic location of the fire. To minimize the risk of fire accidents as well as the time and cost of preparing and executing live fire tests, a 40m × 40m-virtual space is created, where two ultraviolet sensors are simulated to rotate horizontally to collect ultraviolet signals. In addition, Bayesian estimation is executed to compute the probability of the fire location by considering both sensor errors and uncertainty under fire environments. For the validation of the proposed method, sixteen fires were simulated in different locations and evaluated by calculating the difference in distance between simulated and estimated fire locations. As a result, the proposed method demonstrates reliable outputs, showing that the error distribution tendency widens as the radial distance between the sensor and the fire increases.
This study deals with the estimation of material properties according to the construction condition for water-soluble rubberized asphalt waterproofing material of spray type. In this study, the waterproofing material property by the spray construction method is suggested by means of estimation its tensile performance and temperature dependency according to mix proportion ratio(4:1, 8:1), referenced viscosity and solid content (A:360cps, 76%, B:580cps, 79%, C:490cps, 70%), spray angle($30^{\circ}$, $45^{\circ}$, $60^{\circ}$), and spray distance(30cm, 50cm, 70cm). The result of testing are as follows. (1) The mix proportion ratio of principal agent and hardener is 4:1. (2) The viscosity referenced and solid content are 490cps and 70%. (3) The spray angle referenced is $45.^{\circ}$ (4) The distance referenced from concrete surface to spray gun is 40~50cm.
In this paper, we propose a method for estimating the pose of the camera using a rectangle feature utilized for the visual SLAM. A warped rectangle feature as a quadrilateral in the image by the perspective transformation is reconstructed by the Coupled Line Camera algorithm. In order to fully reconstruct a rectangle in the real world coordinate, the distance between the features and the camera is needed. The distance in the real world coordinate can be measured by using a stereo camera. Using properties of the line camera, the physical size of the rectangle feature can be induced from the distance. The correspondence between the quadrilateral in the image and the rectangle in the real world coordinate can restore the relative pose between the camera and the feature through obtaining the homography. In order to evaluate the performance, we analyzed the result of proposed method with its reference pose in Gazebo robot simulator.
Two dimensional modeling was carried out to find the safety distance between the defrost heater and the plastic inner wall of domestic refrigerator Estimation was processed for the three cases; the estimation of plastic wall temperature (1) without any protection, (2) with an aluminum foil attached on a wall, and (3) with an aluminum shield installed between heater and wall. The former two cases are found to be dangerous during defrosting process, because the temperatures of inner wall reach above 80'C , which is the upper temperature limit of the wall material. The case with an aluminum shield is considered to be safe by maintaining the temperature of the wall in the range of 6$0^{\circ}C$ during defrosting process.
This paper presents the new in-flight alignment method using the flight distance of vehicle in order to improve the performance of the heading error estimation. In the proposed method, the Kalman filter having the difference between GPS and SDINS position as measurements is used for levelling of SDINS and heading error is estimated utilizing the flight distance information. It is shown in the simulation results that the in-flight method proposed in this paper has the high accuracy in heading error estimation and the heading error can be very quickly estimated at the high speed vehicle, compared with the existing method using the Kalman filter.
오차분포 추정을 위한 커널 사이즈는 오차확률밀도 사이의 유클리드 거리를 최소화 알고리즘의 가중치 갱신에 적합한 커널 사이즈가 될 수 없다. 이 논문에서는 MED 알고리즘의 수렴 성능 향상을 위해 적응적으로 커널 사이즈를 갱신하는 방법을 제안하였다. 제안한 방식은 MED 학습 알고리즘의 가중치 갱신을 위해 커널 사이즈에 대한 오차분산의 평균변화율을 도입하여 MED의 오차에 대한 평균전력이 감소하는 방향으로 커널 사이즈를 조절하도록 하였다. 제안된 적응 커널 추정법을 무선통신 채널의 왜곡 보상에 적용하여 학습 성능을 실험하고 그 효능을 밝혔다. 오차분산에 비례한 작은 값을 가지는 기존의 오차분포 추정 위한 최적 커널 사이즈와 달리, 제안한 방법에 의한 커널 사이즈는 MED 가중치 수렴을 위한 적절한 커널 사이즈로 수렴함을 보였다. 실험 결과로부터 제안한 방법이 MED 알고리즘의 커널 사이즈 설정에 따른 민감성을 크게 해결한 방법이라고 볼 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.