• 제목/요약/키워드: Distance Measuring Sensor

검색결과 169건 처리시간 0.036초

TSCM을 이용한 플라스틱 광섬유 온도센서의 제작 및 특성평가 (Fabrication and characterization of plastic fiber optic temperature sensor using TSCM)

  • 이봉수;허혜영;조동현;김신;조효성
    • 센서학회지
    • /
    • 제14권3호
    • /
    • pp.180-185
    • /
    • 2005
  • In this study, a plastic fiber-optic temperature sensor is fabricated using TSCM(thermo sensitive clouding material) which changes its light transmittance with temperature and the characteristics of this sensor are evaluated. The fabricated fiber optic temperature sensor is the reflector type using a Y-coupler. The optimum light source and reflector are decided by measuring the amount of reflected light through TSCM. Also, the optimum distance from the end of sensor to the surface of reflector is determined. Then the relationship between the amount of measured reflected light and the temperature of TSCM is found.

극한 환경에서 온도 변화에 따른 실외 현장에서의 무선 MEMS 센서 계측 유효성 평가 (Evaluation of Wireless MEMS Sensor Measurements at an Outdoor Field With Temperature Variation in Extreme Environment)

  • 이종호;천동진;윤성원
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.67-74
    • /
    • 2018
  • Recently, measuring instruments for SHM of structures has been developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to the absence of triboelectric noise and elimination of the requirement of a cumbersome cable. However, in extreme environments, the sensor may be less sensitive to temperature changes and to the distance between the sensor and data logger. This may compromise on the performance of the sensor and instrumentation. Therefore, in this paper, free vibration experiments were conducted using wireless MEMS sensors at an actual site. Measurement was assessed in time and frequency domain by changing the temperature variation at($-8^{\circ}C$, $-12^{\circ}C$ and $-16^{\circ}C$) and the communication distance (20m, 40m, 60m, 80m).

시각장애인 보행안전장치 개발에 관한 연구 (Study on the Development of Working Safety Device for Visually Impaired Person)

  • 김효관;최영규
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.366-372
    • /
    • 2016
  • 본 논문은 시각 장애인이 보행 중 장해물의 위치와 거리를 판단할 수 있는 보행안전장치 개발을 위해 소프트웨어와 하드웨어, 기구설계를 진행하였다. 첫 번째 소프트웨어 구현은 초음파센서 측정 거리 대 전압의 비에 대한 그래프를 알고리즘으로 구현 방법을 제시하였다. 그리고 정확한 거리측정을 할 수 있도록 시뮬레이션을 통해 정확한 거리 측정 파라메타 값을 추출하여 하였다. 두 번째 하드웨어 구현은 시각장애인의 보행보조를 위한 비교적 단순한 센서 기반으로 장애물을 감지할 수 있도록 회로를 설계하였다. 또한 배더리 충전의 편리성을 위해 고성능의 스위칭 레귤레이터 IC를 사용하여 리튬-이온(Li-ion) 배터리 3.7V를 5V로 승압하여 사용할 수 있도록 설계하였다. 세 번째 기구설계는 지팡이 지면 각도와 센서 각도를 분석하여 기구설계를 하였다.

보급형 도로환경센서 및 안개 가시거리 추정식 개발 연구 (Study on the Development of Advanced Road Environment Sensor and Estimation Formula for Fog Visibility Distance)

  • 조중호;진민수;조원범
    • 한국ITS학회 논문지
    • /
    • 제21권4호
    • /
    • pp.50-61
    • /
    • 2022
  • 눈, 비, 안개, 미세먼지는 차량 운전자의 시야를 방해하고 이는 안전거리 미확보와 속도 편차의 증가를 야기하여 반복적인 대형 교통사고의 원인이 되고 있다. 본 연구에서는 안개, 눈, 비, 온도, 습도, 풍향, 풍속, 일사량, 기압, 미세먼지, 강수량 등 11종류를 측정할 수 있는 보급형 국산 도로환경센서를 개발하였으며, 기존에 상용되고 있는 안개 가시거리 센서로부터 측정된 가시거리와 개발 센서의 적외선 송·수신부를 통해 측정된 적외선 신호값을 비교하여, 두 측정값의 관계를 도출하였다. 기존 안개 가시거리 센서와 개발센서 측정값의 관계는 도로 안전에 직접적 영향을 미치는 500m 이하의 가시거리에서 측정된 데이터를 대상으로 도출되었다. 개발센서의 적외선 신호값과 기준 센서에서 도출된 가시거리의 비교 결과, 통계적으로 두 데이터 간 상관관계가 매우 높은 것으로 분석되었으며, 개발 센서의 적외선 신호값을 활용하여 안개 가시거리를 기준 센서와 매우 유의한 수준으로 추정할 수 있는 것으로 판단된다.

A Study on Displacement Measurement Hardware of Retaining Walls based on Laser Sensor for Small and Medium-sized Urban Construction Sites

  • Kim, Jun-Sang;Kim, Jung-Yeol;Kim, Young-Suk
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1250-1251
    • /
    • 2022
  • Measuring management is an important part of preventing the collapse of retaining walls in advance by evaluating their stability with a variety of measuring instruments. The current work of measuring management requires considerable human and material resources since measurement companies need to install measuring instruments at various places on the retaining wall and visit the construction site to collect measurement data and evaluate the stability of the retaining wall. It was investigated that the applicability of the current work of measuring management is poor at small and medium-sized urban construction sites(excavation depth<10m) where measuring management is not essential. Therefore, the purpose of this study is to develop a laser sensor-based hardware to support the wall displacement measurements and their control software applicable to small and medium-sized urban construction sites. The 2D lidar sensor, which is more economical than a 3D laser scanner, is applied as element technology. Additionally, the hardware is mounted on the corner strut of the retaining wall, and it collects point cloud data of the retaining wall by rotating the 2D lidar sensor 360° through a servo motor. Point cloud data collected from the hardware can be transmitted through Wi-Fi to a displacement analysis device (notebook). The hardware control software is designed to control the 2D lidar sensor and servo motor in the displacement analysis device by remote access. The process of analyzing the displacement of a retaining wall using the developed hardware and software is as follows: the construction site manager uses the displacement analysis device to 1)collect the initial point cloud data, and after a certain period 2)comparative point cloud data is collected, and 3)the distance between the initial point and comparison point cloud data is calculated in order. As a result of performing an indoor experiment, the analyses show that a displacement of approximately 15 mm can be identified. In the future, the integrated system of the hardware designed here, and the displacement analysis software to be developed can be applied to small and medium-sized urban construction sites through several field experiments. Therefore, effective management of the displacement of the retaining wall is possible in comparison with the current measuring management work in terms of ease of installation, dismantlement, displacement measurement, and economic feasibility.

  • PDF

뇌방전에 의하여 발생하는 전계파형의 측정과 분석 (The measurement and analysis of the electric field waveforms produced by lightning discharges)

  • 이복희;주문노;길경석;안창환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.444-446
    • /
    • 1995
  • This paper deals with semisphere-type sensor fo measuring the electric field waveforms by lightning discharges. The theoretical principle and design rule of the device are introduced, and also the calibration and application investigations are carried out. From the calibration experiments, the frequency bandwidth of the semisphere-type electric field measuring device ranges from 200 [Hz] to 1.56 [MHz], and the sensitivity of sensor is 0.96 [mV/V/m]. The electric field waveforms produced by lightning discharges were observed for June and August 1995. It is shown that the electric field waveforms produced at the distance of more than 50 [km] include only radiation component.

  • PDF

포토카플러를 이용한 눈(snow)높이 감지 강설 계측시스템 (Snow-Falling Measurement System monitoring the Height of Snow using the Photo Coupler)

  • 최만용;박해원;박정학;김원태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.517-520
    • /
    • 2003
  • The snow-fatting measurement system including the snow sensor applying the photo-coupler is investigated in this study and using this snow sensor the height of snow fallen is measured. To measure the snow depth, five photo sensors are arranged with 5 mm distance. The snow-falling measurement system, which is measuring the motor revolution controlled with stepping motor, is mounted above the snow surface. From this work, it is feasible to measure quantitatively the snow on real time. Its software implements a proven method to achieve valid measurements also under difficult conditions as future study. In cases where the snow sensor is applieded to the prediction of snow in the meteorological observation system and the snow removing system, it is recommend the GRS-Option in order to improve the quality of snow measurements for better compensation.

  • PDF

회전속도와 탄성파를 동시에 측정하는 비접촉 자왜형 센서의 자기적 특성 분석 (Analysis of Magnetic Characteristics for a Noncontact Magnetostrictive Sensor Simultaneously Measuring Rotational Speed and Force)

  • 이호철
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.418-424
    • /
    • 2009
  • This work is the attempt to give qualitative explanations to complex magnetic phenomena which are observed in the previously proposed magnetostrictive sensor capable of ultrasonic waves and rotational speed measurement. The law of approach is adopted as analysis tool in order to account for some extraordinary output patterns and proved to be effective. The distance between the anhysteretic curve current magnetic state and the variation of anhysteretic curve by stress mainly determine the sensor output shapes and their uniqueness. It is also experimentally verified that the precisely determined bias magnetic field strength can not only remove the unusual output parts but also maximize its sensitivity.

자외선 센서를 이용한 코로나 방전 강도에 따른 자외선 검출 (UV Detecting according to Corona Discharge Intensity using UV Sensor)

  • 곽동순;김영석
    • 조명전기설비학회논문지
    • /
    • 제28권3호
    • /
    • pp.78-83
    • /
    • 2014
  • To minimize the financial loss due to power facility malfunction, on-line diagnostic techniques are required to grasp any abnormal state of facilities in the live line as well as devices to diagnose abnormal states of power facility in an easy and prompt manner. This study aims to develop a portable UV detecting system by means of UV sensors for easier and efficient inspection of the degradation state of power facility in a long distance. Accordingly, it includes a simulation of corona discharges that may occur due to degradation of power facility and detection of ultraviolet pulse generation depending on the corona discharge intensity and measuring distance in application of UV sensors. Additionally, the optimal algorithm is determined for its application to the system's degradation diagnosis program based on the measured experiment data.

광촉각 센서와 힘/역학센서의 퍼지융합을 통한 접촉면의 인식 (Recognition of contact surfaces using optical tactile and F/T sensors integrated by fuzzy fusion algorithm)

  • 고동환;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.628-631
    • /
    • 1996
  • This paper proposes a surface recognition algorithm which determines the types of contact surfaces by fusing the information collected by the multisensor system, consisted of the optical tactile and force/torque sensors. Since the image shape measured by the optical tactile sensor system, which is used for determining the surface type, varies depending on the forces provided at the measuring moment, the force information measured by the f/t sensor takes an important role. In this paper, an image contour is represented by the long and short axes and they are fuzzified individually by the membership function formulated by observing the variation of the lengths of the long and short axes depending on the provided force. The fuzzified values of the long and short axes are fused using the average Minkowski's distance. Compared to the case where only the contour information is used, the proposed algorithm has shown about 14% of enhancement in the recognition ratio. Especially, when imposing the optimal force determined by the experiments, the recognition ratio has been measured over 91%.

  • PDF