• Title/Summary/Keyword: Dissolved organic nitrogen

Search Result 157, Processing Time 0.026 seconds

Model Development for the Nitrification-Denitrification Coupled Process

  • Lee, Mee-Sun;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.195-198
    • /
    • 2002
  • Nitrogen pollution in urban and rural groundwater is a common problem and poses a major threat to drinking water supplies based on groundwater. In this work, the kinetics of nitrification-denitrification coupled reactions are modeled and new reaction modules for the RT3D code (Clement, 1997) describing the fate and transport nitrogen species, dissolved oxygen, dissolved organic carbon, and biomass are developed. The proposed nitrogen transformations and transport model showed very good match with results of a conceptual model. However, the model simulation results for the major reactive species should be tested for validation using experimental and field data.

  • PDF

Effects of Oxidation Reduction Potential and Organic Compounds on Anammox Reaction in Batch Cultures

  • Viet, Truong Nguyen;Behera, Shishir Kumar;Kim, Ji-Won;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.210-215
    • /
    • 2008
  • The present study investigates the effect of oxidation-reduction potential (ORP) and organic compounds on specific anaerobic ammonium oxidation activity (SAA) using batch experiments. The batch tests were based on the measurement of nitrogen gas production. The relationship between ORP and dissolved oxygen (DO) concentration was found to be ORP (mV) = 160.38 + 68 log [$O_2$], where [$O_2$] is the DO concentration in mg/L. The linear relationship obtained between ORP and SAA ($R^2$ = 0.99) clearly demonstrated that ORP can be employed as an operational parameter in the Anammox process. At ORP value of -110 mV, the SAA was $0.272{\pm}0.03\;g\;N_2-N\;(g\;VSS)^{-1}\;d^{-1}$. The investigation also revealed inhibitory effect of glucose on the SAA while acetate concentration up to 640 mg COD/L (corresponding to 10 mM) had stimulating effect on the SAA. However, acetate concentration beyond 640 mg COD/L had inhibitory effect on the Anammox activity. The results indicated that nitrogen rich wastewaters containing low level organic matter could be better treated by Anammox microorganisms in real-world conditions after some acidification process.

The Distribution of Nitrogen and the Decomposition Rate of Organic Nitrogen in the Youngsan River and the Sumjin River, Korea (영산강과 섬진강 수계의 질소 분포와 유기질소 분해속도)

  • Kim, Jihye;Kim, Bomchul;Shin, Myoungsun;Kim, Jaiku;Jung, Sungmin;Lee, Yunkyoung;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.142-150
    • /
    • 2009
  • The distribution of organic nitrogen and its decomposition rate were studied in the Youngsan River and the Sumjin River system in Korea. Samples were conducted seasonally in June, August, December of 2006, and February of 2007. Collected samples were incubated for 20 days in a dark chamber ($20{\pm}1^{\circ}C$) and analyzed the changes of nitrogen form (particulate organic nitrogen, dissolved organic nitrogen, ammonia, nitrite, and nitrate). The mean total nitrogen (TN) concentration in the Youngsan River and the Sumjin River were $2.62mgN{\cdot}L^{-1}$ and $1.53mgN{\cdot}L^{-1}$, respectively. TN comprised of 65% DIN and 35% ON. The decomposition coefficients of organic nitrogen were also determined by two different fitting models. The decomposition rates of nitrogen species (TON, LPON, LDON, ${NH_4}^+$ and ${NO_2}^-$) ranged from 0.024 to $1.043day^{-1}$ in the Youngsan River and 0.008 to $0.693day^{-1}$ in the Sumjin River, respectively. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.

Advanced Analytical Techniques for Dissolved Organic Matter and Their Applications in Natural and Engineered Water Treatment Systems (최근 용존 유기물 분석 기법 및 자연환경과 수 처리 시스템 내 활용방안)

  • Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.31-42
    • /
    • 2022
  • Dissolved organic matter (DOM), which changes according to various factors, is ubiquitously present from natural environments to engineered treatment systems. Only limited information is available regarding the environmental functions of DOM after bulk analyses are only applied for characterization. In this paper, latest DOM analytical techniques are briefly introduced, which include fluorescence excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), size-exclusion chromatography with an organic carbon detector (SEC-OCD), carbon/nitrogen stable-isotope ratio, and Fourier transform-ion cyclotron resonance-mass spectroscopy (FT-ICR-MS). Recent examples of using advanced analyses to interpret the phenomena associated with DOM occurring in natural and engineered systems are presented here. Through EEM-PARAFAC, different components like protein-like, fulvic-like, and humic-like can be identified and tracked individually through the investigated systems. SEC-OCD allows researchers to quantify different size fractions. FT-ICR-MS provides thousands of molecular formulas present in bulk DOM samples. Lastly, carbon/nitrogen stable-isotope ratio offers reasonable tools for tracking the sources in environments. We also discuss the advantages and weakness of the above-mentioned characterizing tools. Specifically, they focus on single environmental factors (different sourced-DOM and interaction of sediment-pore water) or simple changes after individual treatment processes. Through collaboration with the advanced techniques later, they help the researchers to better understand environmental behaviors in aquatic systems and serve as essential tools for addressing various pending problems associated with DOM.

The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea

  • Kwak, Sunggue;Yun, Zuwhan
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.345-351
    • /
    • 2020
  • Eutrophication of surface waters is commonly caused by excessive inputs of nutrients such as nitrogen and phosphorus. Nakdong River basin was chosen as the study area to investigate the effect of point and non-point source pollution of nitrogen on eutrophication in water body. Non-point source inputs of nitrogen accounted for approximately 84% in the total nitrogen input of the upper Nakdong river watershed, which mainly consists of agricultural land and forests. However, point source inputs of nitrogen accounted for 58~85% in the total nitrogen input of the middle and lower watersheds, including urban area. Therefore, for watershed near urban area, control of point source inputs of nitrogen may be an optimal method to control eutrophication. In this respect, the enforcing reduction of nitrogen in the final effluent of wastewater treatment facilities is needed. On the other hand, to enact more stringent nitrogen regulations, the LOT (limit of technology) and environmental impact should be considered. In this study nitrogen data were analyzed to propose new nitrogen regulations.

Characteristics of Marine Environment and Primary Productivity of Phytoplankton in the Seaweed Bed of Northwestern Coast of Jeju Island During Autumn 2014 (2014년 추계 제주 북서부 해조장에서 해양환경과 식물플랑크톤의 일차생산력 특성)

  • KWON, HYEONG KYU;YANG, HAN SOEB;YOON, YANG HO;CHOI, OK IN;CHOI, IM HO;OH, SEOK JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.180-191
    • /
    • 2015
  • Marine environmental characteristics and primary productivity of phytoplankton were investigated in seaweed bed of northwestern coast of Jeju Island during Autumn, 2014. The trophic state based on dissolved inorganic nitrogen and phosphorus was mesotrophic. The Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplankton. Dissolved organic nitrogen and phosphorus accounts for 63 and 46% of the dissolved total nitrogen and phosphorus, respectively. Light utilization efficiency (${\alpha}$) and maximum photosynthetic capacity ($P_m{^B}$) were highest in the Donggwi (third-year marine forest), followed by Gonae (one-year marine forest), Biyangdo (natural seaweed bed) and Geumneung (whitening area). The primary productivity of phytoplankton in the Donggwi, Gonae and Biyangdo also was higher than that in the Geumneung. Although nitrogen is the limiting factor, enriched dissolved organic nitrogen might play an important role to maintain primary productivity. In addition, phytoplankton community through photosynthesis could produce about 14% of phytoplankton carbon in one hour. These results will be able to use the important information for material cycle and ecological valuation of seaweed bed.

Effects of Dissolved Inorganic and Organic Nutrient (Nitrogen and Phosphorus) on the Growth of Dinoflagellate Alexandrium affine (와편모조류 Alexandrium affine의 생장에 미치는 용존태 무기 및 유기 영양염(질소와 인)의 영향)

  • Oh, Seok Jin;Kim, Ji Hye;Park, Kyung Woo;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.630-638
    • /
    • 2021
  • In this study, we investigated the effects of dissolved inorganic and organic nutrient on the growth of dinoflagellate Alexandrium affine (LIMS-PS-2345). The maximum uptake rates (ρmax) and half saturation constants (Ks) calculated from the uptake kinetics experiment were 77.0 pmol/cell/hr, 17.6 μM for nitrate and 15.5 pmol/cell/hr, 3.88 μM for phosphate, respectively. These results suggested that this species has high inorganic nutrient demand and a low affinity for inorganic nutrients. During the utilization of organic nutrients for A. affine, growth rates of experimental groups added by organic nitrogen (urea and glycine) and phosphorus (adenosine triphosphate and glycerol phosphate) were above 70 %, compared to the experimental groups added by inorganic nutrients. Thus, A. affine may need to utilize organic nutrients to understand the dominant strategy and advantageous position in the interspecific competition within low inorganic nutrient environments.

Extent and persistence of dissolved oxygen enhancement using nanobubbles

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.427-435
    • /
    • 2016
  • In this study, change in water-dissolved oxygen (DO) was analyzed under various synthetic water qualities and nanobubbles (NBs) application conditions, such as gas type, initial DO as well as water dissolved, suspended and organic matters contents. When oxygen, rather than air, was introduced into nitrogen-desorbed ultra-pure water, the stagnation time was significantly increased. It took ten days for DO concentration to drop back to saturation. The higher the initial DO concentration, the longer particles were observed above saturation due to particle stability improvement. The oxygen mass transfer rate of 0.0482 mg/L/min was found to reach a maximum at an electrolytic concentration of 0.75 g/L, beyond which the transfer rate decreased due to adsorption of negative ions of the electrolyte at the interface. High levels of turbidity caused by suspended solids have become a barrier to dissolution of NBs oxygen into the water solution, and thus affected the transfer performance. On the other hand, by applying NBs for just an hour, up to 7.2% degradation of glucose as representative organic matter was achieved. Thus, NBs technology would maintain a high DO extent for an extended duration, and thus can improve water quality provided that water chemistry is closely monitored during its application.

Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag

  • Noh, Jin H.;Lee, Sang-Hyup;Choi, Jae-Woo;Maeng, Sung Kyu
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2018
  • A sidestream contains the filtrate or concentrate from the belt filter press, filter backwash and supernatant from sludge digesters. The sidestream flow, which heads back into the sewage treatment train, is about 1-3% less than the influent flow. However, the sidestream can increase the nutrient load since it contains high concentrations of phosphorus and nitrogen. In this study, the removal of PO4-P with organic matter characteristics and bacteriological changes during the sidestream treatment via ladle furnace (LF) slag was investigated. The sidestream used in this study consisted of 11-14% PO4-P and 3.2-3.6% soluble chemical oxygen demand in influent loading rates. LF slag, which had a relatively high $Ca^{2+}$ release compared to other slags, was used to remove $PO_4-P$ from the sidestream. The phosphate removal rates increased as the slag particle size decreased 19.1% (2.0-4.0 mm, 25.2% (1.0-2.0 mm) and 79.9% (0.5-1.0 mm). The removal rates of dissolved organic carbon, soluble chemical oxygen demand, color and aromatic organic matter ($UV_{254}$) were 17.6, 41.7, 90.2 and 77.3%, respectively. Fluorescence excitation-emission matrices and liquid chromatography-organic carbon detection demonstrated that the sidestream treatment via LF slag was effective in the removal of biopolymers. However, the removal of dissolved organic matter was not significant during the treatment. The intact bacterial biomass decreased from $1.64{\times}10^8cells/mL$ to $1.05{\times}10^8cells/mL$. The use of LF slag was effective for the removal of phosphate and the removal efficiency of phosphate was greater than 80% for up to 100 bed volumes.