DOI QR코드

DOI QR Code

Characteristics of Marine Environment and Primary Productivity of Phytoplankton in the Seaweed Bed of Northwestern Coast of Jeju Island During Autumn 2014

2014년 추계 제주 북서부 해조장에서 해양환경과 식물플랑크톤의 일차생산력 특성

  • KWON, HYEONG KYU (Korea Inter-University Institute of Ocean Science, Pukyong National University) ;
  • YANG, HAN SOEB (Department of Oceanography, Pukyong National University) ;
  • YOON, YANG HO (Faculty of Marine Technology, Chonnam National University) ;
  • CHOI, OK IN (Ecology and Restoration Division, Korea Fisheries Resources Agency) ;
  • CHOI, IM HO (Ecology and Restoration Division, South Sea Branch, Korea Fisheries Resources Agency) ;
  • OH, SEOK JIN (Department of Oceanography, Pukyong National University)
  • 권형규 (부경대학교 해양과학공동연구소) ;
  • 양한섭 (부경대학교 해양학과) ;
  • 윤양호 (전남대학교 해양기술학부) ;
  • 최옥인 (한국수산자원관리공단 생태복원실) ;
  • 최임호 (한국수산자원관리공단 남해지사 생태복원실) ;
  • 오석진 (부경대학교 해양학과)
  • Received : 2015.08.05
  • Accepted : 2015.11.12
  • Published : 2015.11.30

Abstract

Marine environmental characteristics and primary productivity of phytoplankton were investigated in seaweed bed of northwestern coast of Jeju Island during Autumn, 2014. The trophic state based on dissolved inorganic nitrogen and phosphorus was mesotrophic. The Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplankton. Dissolved organic nitrogen and phosphorus accounts for 63 and 46% of the dissolved total nitrogen and phosphorus, respectively. Light utilization efficiency (${\alpha}$) and maximum photosynthetic capacity ($P_m{^B}$) were highest in the Donggwi (third-year marine forest), followed by Gonae (one-year marine forest), Biyangdo (natural seaweed bed) and Geumneung (whitening area). The primary productivity of phytoplankton in the Donggwi, Gonae and Biyangdo also was higher than that in the Geumneung. Although nitrogen is the limiting factor, enriched dissolved organic nitrogen might play an important role to maintain primary productivity. In addition, phytoplankton community through photosynthesis could produce about 14% of phytoplankton carbon in one hour. These results will be able to use the important information for material cycle and ecological valuation of seaweed bed.

2014년 추계에 제주 북서부 연안의 해조장에서 해양환경 및 식물플랑크톤의 일차생산력 특성을 파악하였다. 연구 해역의 용존태 무기 질소와 용존태 무기 인은 중영양의 영양상태였으며, Redfield ratio는 16 이하로 무기 질소가 식물플랑크톤의 성장에 제한 요인으로 나타났다. 또한 용존태 유기 질소와 용존태 유기 인은 각각 용존태 총 질소와 용존태 총 인 중 약 63%, 46%를 구성하고 있었다. 광 이용 효율(${\alpha}$)과 최대 광합성량($P_m{^B}$)은 동귀(바다숲 조성 3년 경과 해역), 고내(바다숲 조성 1년 경과 해역), 비양도(천연해조장), 금능(갯녹음 해역) 순으로 감소하였다. 또한, 식물플랑크톤의 일차생산력은 해조장이 위치한 해역이 갯녹음 해역에 비해서 높았다. 특히, 연구해역은 무기 질소가 제한된 환경이지만 상대적으로 풍부한 용존태 유기 질소는 높은 일차생산을 유지하기 위한 중요한 요인으로 작용할 것이다. 뿐만 아니라 광합성을 통해 한 시간 만에 전체 식물플랑크톤 탄소량의 약 14%를 생산할 수 있는 것으로 나타났으며, 이는 해조장의 물질순환과 생태적 가치평가를 위한 중요한 자료로 활용할 수 있을 것이다.

Keywords

References

  1. Affan, A., J.B. Lee, J.T. Kim, Y.C. Choi, J.M. Kim and J.G. Myoung, 2007. Seasonal dynamics of phytoplankton and environmental factors around the Chagwi-do off the west coast of Jeju Island. Kor. Ocean Sci. J., 42: 117−127. https://doi.org/10.1007/BF03020879
  2. Agateuma, Y., K. Mateuyma, A. Nakata, T. Kawai and N. Nishikawa, 1997. Marine algal succession on coralline flats after removal of sea urchins in Suttsu bay on the Japan sea coast of Hokkaido, Japan. Nippon Suisan Gakkaishi, 63: 672−680. https://doi.org/10.2331/suisan.63.672
  3. Aure, J. and A. Stigebrandt, 1990. Quantitative estimates of the eutrophication effects of fish farming on fjords. Aquaculture, 90: 135−156. https://doi.org/10.1016/0044-8486(90)90337-M
  4. Benedetti-Cecchi, L. and F. Cinelli, 1995. Habitat heterogeneity, sea urchin grazing and the distribution of algae in littoral rock pools on the west coast of Italy (Western Mediterranean). Mar. Ecol. Progr. Ser., 126: 203−212. https://doi.org/10.3354/meps126203
  5. Bodkin, J.L., 1988. Effects of kelp forest removal on associated fish assemblages in central California. J. Exp. Mar. Biol. Ecol., 117:227−238. https://doi.org/10.1016/0022-0981(88)90059-7
  6. Cho, B.C. and F. Azam, 1990. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Mar. Ecol. Prog. Ser., 63: 253−259. https://doi.org/10.3354/meps063253
  7. Choat, J.H. and D.R. Schiel, 1982. Patterns of distribution and abundance of large brown algae and invertebrate herbivores in subtidal regions of northern New Zealand. J. Exp. Mar. Biol. Ecol., 60: 129−162. https://doi.org/10.1016/0022-0981(82)90155-1
  8. Choi, Y.C. and J.S. Kim, 2008. Distribution of physico-chemical characteristics on the development of marine ranching program in the Chagwi-Do coastal waters, Jeju Island. J. Kor. Soc. Mar. Environ. Eng., 11: 105−112.
  9. Chung, K.H., 1996. Deterministic factors of the marine basal production in the coastal waters of Korea. Ph. D. Thesis, Inha University, Incheon, 191 pp.
  10. Cote, B. and T. Platt, 1983. Day-to-day variation in the spring-summer photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr., 28: 320−344. https://doi.org/10.4319/lo.1983.28.2.0320
  11. Eppley, R.W., 1972. Temperature and phytoplankton growth in the sea. Fish Bull., 70: 1063−1085.
  12. Fong, P., J.J. Fong and C.R. Fong, 2004. Growth, nutrient storage, and release of dissolved organic nitrogen by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus. Aqut. Bot., 78: 83−95. https://doi.org/10.1016/j.aquabot.2003.09.006
  13. Grasshoff, K., K. Kremling and M. Ehrhardt, 1999. Method of seawater analysis. Wiley-VCH, Weinheim, 160 pp.
  14. Hansell, D. and T. Waterhouse, 1997. Controls on the distributions of organic carbon and nitrogen in the eastern Pacific Ocean. Deep-Sea Res., 44: 843−857. https://doi.org/10.1016/S0967-0637(96)00128-8
  15. Harris, G.P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergebn. Limnol., 10: 1−171.
  16. Herbeck, S.H., D. Unger, W. Ying and T.C. Jennerjahn, 2013. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China. Cont. Shelf Res., 57: 92−104. https://doi.org/10.1016/j.csr.2012.05.006
  17. Joo, H.S., S.H. Kim and W.B. Lee, 2002. Seasonal variation of primary productivity in Gangjin Bay. Kor. J. Environ. Biol., 20: 146−151.
  18. Kim, H.G., 2002. Vegetational Characteristics of barren grounds on the eastern coast of Korea. APPF joint conference, pp. 34.
  19. Kim, H.J., 2015. Effects of dissolved nitrogen and phosphorus on the interspecific competition between harmful dinoflagellate Cochlodinium polykrikoides and diatom Skeletonema sp.. M. Sc. Thesis, Pukyong National University, Busan, pp 142.
  20. Kim, J.K., 2000. The effect of primary production by thermal effluent of the Hadong Power Plant. M. Sc. Thesis, Chonnam National University, Yeosu, pp. 61.
  21. Ko, E.H., 2014. Comparison of chlorophyll fluorescence method and 14C method to estimate primary production in Korean water. M. Sc. Thesis, University of Science and Technology, Daejeon, pp. 75.
  22. Koh, H.J., S.E. Park, H.K. Cha, D.S. Chang and J.H. Koo, 2013. Coastal eutrophication caused by effluent from aquaculture ponds in Jeju. J. Kor. Soc. Mar. Environ. Saf., 19: 315−326. https://doi.org/10.7837/kosomes.2013.19.4.315
  23. Kwon, H.K., S.J. Oh, M.O. Park and H.S. Yang, 2014. Distribution of water masses and distribution characteristics of dissolved inorganic and organic nutrients in the southern part of the East of Korea: Focus on the observed data in September, 2011. J. Kor. Soc. Mar. Environ. Ener., 17: 90−103. https://doi.org/10.7846/JKOSMEE.2014.17.2.90
  24. Lalli, C.M. and T.R. Parsons, 1997. Biological Oceanography: An introduction. Pergamon Press, Oxford, 314 pp.
  25. Lee, B.D., H.K. Kang and Y.J. Kang, 1991. Primary production in the oyster farming Bay. Bull. Kor. Fish. Soc., 24: 39−51.
  26. Lee, J.B., J.H. Choa, Y.B. Go and Y.C. Choi, 1993. Bioecological Studies of the Eastern Coastal Area in Cheju Island. J. Kor. Earth Sci. Soc., 14: 458−466.
  27. Lee, J.B., J.H. Choa, D.W. Kang, Y.B. Go and B.C. Oh, 2000. Bioecological characteristics of coral habitats around Moonsom, Cheju Island, Korea. Algae, 15: 37−47.
  28. Lonborg, C., K. Davidson, X.A. Álvarez-Salgado and A.E.J. Miller, 2009. Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Mar. Chem., 113: 219−226. https://doi.org/10.1016/j.marchem.2009.02.003
  29. Min, J.O., S.Y. Ha, M.H. Chung, B.H. Choi, Y.J. Lee, W.D. Youn, J.S. Lee and K.H. Shin, 2012. Seasonal variation of primary productivity and pigment of phytoplankton community structure in the Seomjin Estuary. Kor. J. Limnol., 45: 139−149.
  30. MLTM(Ministry of Land, Transportation and Marine Affairs), 2010. Standard methods for marine environmental analysis, Seoul, 495 pp.
  31. NFRDI(National Fisheries Research and Development Institute), 2008. A study on construction of seaweed forest in the east sea. Report of NFRDI, 198 pp.
  32. Nishikawa, T. and M. Yamaguchi, 2006. Effects of temperature on light-limited growth of the harmful diatom Eucampia zodiacus Ehrenberg, a causative organism in the discoloration of Porphyra thalli. Harmful Algae, 5: 141−147. https://doi.org/10.1016/j.hal.2005.06.007
  33. Park, J.A., 2015. DON utilization of toxic dinoflagellate Alexandrium tamarense and Alxandrium catenatum isolated from Masan Bay. M. Sc. Thesis, Pukyong National University, Busan, pp. 92.
  34. Park, J.G., S.H. Huh and H.J. Jeong, 2001. Phytoplankton in Chinhae Bay: I. Photosynthetic properties and primary production in variant light environments. Algae, 16: 189−196.
  35. Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New-York, 173 pp.
  36. Platt, T., C.L. Gallegos and W.B. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38: 687−701.
  37. Poole, H.H. and W.R.G. Atkins, 1929. Photoelectric measurements of submarine illumination throughout the year. J. Mar. Biol. Asso. UK., 16: 297−324. https://doi.org/10.1017/S0025315400029829
  38. Santelices, B., 1990. Patterns of reproduction, dispersal and recruitment in the seaweed. In: Oceanography and Marine Biology: An Annual Review, edited by Barnes, M., Aberdeen University Press/ Allen & Unwin, London, pp. 177−276.
  39. Talling, J.F., 1975. Primary production of freshwater microphytes. In: Photosynthesis and productivity in different environments, edited by Cooper, J.P., Cambridge University Press, pp. 225−247.
  40. Toress-Valdes, S., V.M. Roussenov, R. Sanders, S. Reynolds, X. Pan, R. Mather, A. Landolfi, G.A. Wolff, E.P. Achterberg and R.G. Williams, 2009. Distribution of dissolved organic nutrients and their effect on export production over the Atlantic Ocean. Glob. Biogeochem. Cycles, 23: GB4010.
  41. Tyler, A.C., K.J. McGlathery and I.C. Anderson, 2001. Macroalgae mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon. Est. Coast. Shelf Sci., 53: 155−168. https://doi.org/10.1006/ecss.2001.0801
  42. Valiela, I., 1984. Marine ecological processes. Springer-Verlag, pp. 546.
  43. Wasmund, N., A. Andrushaitis, E. Lysiak-Pastuszak, B. Muller-Karulis, G. Nausch, T. Neumann, H. Ojaveer, I. Olenina, L. Postel and Z. Witek, 2001. Trophic status of the South-Eastern Baltic Sea: A comparison of coastal and open areas, Est. Coast. Shelf Sci., 53: 849−864. https://doi.org/10.1006/ecss.2001.0828
  44. Watanabe, J.M. and C. Horrord, 1991. Destructive grazing by sea urchin Strongylocentrotus spp. in a central Califonia kelp: potential on recruitment, depth, and predation. Mar. Ecol. Prog. Ser., 71: 12−14.
  45. Yeo, H.G. and J.H. Shim, 1993. Ecological effects of thermal effluent in the Korean coastal waters. IV. Biomass and productivity of primary producers in the vicinity of Kori nuclear power plant. Kor. J. Environ. Biol., 11: 124−130.
  46. Yoon, Y.H., 2014. Marine environments and production of laver farm at Aphae-do based on water quality and phytoplankton community. Kor. J. Environ. Biol., 32: 159−167. https://doi.org/10.11626/KJEB.2014.32.3.159