• 제목/요약/키워드: Dissolved organic nitrogen

검색결과 157건 처리시간 0.024초

Model Development for the Nitrification-Denitrification Coupled Process

  • Lee, Mee-Sun;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.195-198
    • /
    • 2002
  • Nitrogen pollution in urban and rural groundwater is a common problem and poses a major threat to drinking water supplies based on groundwater. In this work, the kinetics of nitrification-denitrification coupled reactions are modeled and new reaction modules for the RT3D code (Clement, 1997) describing the fate and transport nitrogen species, dissolved oxygen, dissolved organic carbon, and biomass are developed. The proposed nitrogen transformations and transport model showed very good match with results of a conceptual model. However, the model simulation results for the major reactive species should be tested for validation using experimental and field data.

  • PDF

Effects of Oxidation Reduction Potential and Organic Compounds on Anammox Reaction in Batch Cultures

  • Viet, Truong Nguyen;Behera, Shishir Kumar;Kim, Ji-Won;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.210-215
    • /
    • 2008
  • The present study investigates the effect of oxidation-reduction potential (ORP) and organic compounds on specific anaerobic ammonium oxidation activity (SAA) using batch experiments. The batch tests were based on the measurement of nitrogen gas production. The relationship between ORP and dissolved oxygen (DO) concentration was found to be ORP (mV) = 160.38 + 68 log [$O_2$], where [$O_2$] is the DO concentration in mg/L. The linear relationship obtained between ORP and SAA ($R^2$ = 0.99) clearly demonstrated that ORP can be employed as an operational parameter in the Anammox process. At ORP value of -110 mV, the SAA was $0.272{\pm}0.03\;g\;N_2-N\;(g\;VSS)^{-1}\;d^{-1}$. The investigation also revealed inhibitory effect of glucose on the SAA while acetate concentration up to 640 mg COD/L (corresponding to 10 mM) had stimulating effect on the SAA. However, acetate concentration beyond 640 mg COD/L had inhibitory effect on the Anammox activity. The results indicated that nitrogen rich wastewaters containing low level organic matter could be better treated by Anammox microorganisms in real-world conditions after some acidification process.

영산강과 섬진강 수계의 질소 분포와 유기질소 분해속도 (The Distribution of Nitrogen and the Decomposition Rate of Organic Nitrogen in the Youngsan River and the Sumjin River, Korea)

  • 김지혜;김범철;신명선;김재구;정성민;이윤경;박주현
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.142-150
    • /
    • 2009
  • The distribution of organic nitrogen and its decomposition rate were studied in the Youngsan River and the Sumjin River system in Korea. Samples were conducted seasonally in June, August, December of 2006, and February of 2007. Collected samples were incubated for 20 days in a dark chamber ($20{\pm}1^{\circ}C$) and analyzed the changes of nitrogen form (particulate organic nitrogen, dissolved organic nitrogen, ammonia, nitrite, and nitrate). The mean total nitrogen (TN) concentration in the Youngsan River and the Sumjin River were $2.62mgN{\cdot}L^{-1}$ and $1.53mgN{\cdot}L^{-1}$, respectively. TN comprised of 65% DIN and 35% ON. The decomposition coefficients of organic nitrogen were also determined by two different fitting models. The decomposition rates of nitrogen species (TON, LPON, LDON, ${NH_4}^+$ and ${NO_2}^-$) ranged from 0.024 to $1.043day^{-1}$ in the Youngsan River and 0.008 to $0.693day^{-1}$ in the Sumjin River, respectively. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.

최근 용존 유기물 분석 기법 및 자연환경과 수 처리 시스템 내 활용방안 (Advanced Analytical Techniques for Dissolved Organic Matter and Their Applications in Natural and Engineered Water Treatment Systems)

  • 이윤경;허진
    • 한국물환경학회지
    • /
    • 제38권1호
    • /
    • pp.31-42
    • /
    • 2022
  • Dissolved organic matter (DOM), which changes according to various factors, is ubiquitously present from natural environments to engineered treatment systems. Only limited information is available regarding the environmental functions of DOM after bulk analyses are only applied for characterization. In this paper, latest DOM analytical techniques are briefly introduced, which include fluorescence excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), size-exclusion chromatography with an organic carbon detector (SEC-OCD), carbon/nitrogen stable-isotope ratio, and Fourier transform-ion cyclotron resonance-mass spectroscopy (FT-ICR-MS). Recent examples of using advanced analyses to interpret the phenomena associated with DOM occurring in natural and engineered systems are presented here. Through EEM-PARAFAC, different components like protein-like, fulvic-like, and humic-like can be identified and tracked individually through the investigated systems. SEC-OCD allows researchers to quantify different size fractions. FT-ICR-MS provides thousands of molecular formulas present in bulk DOM samples. Lastly, carbon/nitrogen stable-isotope ratio offers reasonable tools for tracking the sources in environments. We also discuss the advantages and weakness of the above-mentioned characterizing tools. Specifically, they focus on single environmental factors (different sourced-DOM and interaction of sediment-pore water) or simple changes after individual treatment processes. Through collaboration with the advanced techniques later, they help the researchers to better understand environmental behaviors in aquatic systems and serve as essential tools for addressing various pending problems associated with DOM.

The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea

  • Kwak, Sunggue;Yun, Zuwhan
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.345-351
    • /
    • 2020
  • Eutrophication of surface waters is commonly caused by excessive inputs of nutrients such as nitrogen and phosphorus. Nakdong River basin was chosen as the study area to investigate the effect of point and non-point source pollution of nitrogen on eutrophication in water body. Non-point source inputs of nitrogen accounted for approximately 84% in the total nitrogen input of the upper Nakdong river watershed, which mainly consists of agricultural land and forests. However, point source inputs of nitrogen accounted for 58~85% in the total nitrogen input of the middle and lower watersheds, including urban area. Therefore, for watershed near urban area, control of point source inputs of nitrogen may be an optimal method to control eutrophication. In this respect, the enforcing reduction of nitrogen in the final effluent of wastewater treatment facilities is needed. On the other hand, to enact more stringent nitrogen regulations, the LOT (limit of technology) and environmental impact should be considered. In this study nitrogen data were analyzed to propose new nitrogen regulations.

2014년 추계 제주 북서부 해조장에서 해양환경과 식물플랑크톤의 일차생산력 특성 (Characteristics of Marine Environment and Primary Productivity of Phytoplankton in the Seaweed Bed of Northwestern Coast of Jeju Island During Autumn 2014)

  • 권형규;양한섭;윤양호;최옥인;최임호;오석진
    • 한국해양학회지:바다
    • /
    • 제20권4호
    • /
    • pp.180-191
    • /
    • 2015
  • 2014년 추계에 제주 북서부 연안의 해조장에서 해양환경 및 식물플랑크톤의 일차생산력 특성을 파악하였다. 연구 해역의 용존태 무기 질소와 용존태 무기 인은 중영양의 영양상태였으며, Redfield ratio는 16 이하로 무기 질소가 식물플랑크톤의 성장에 제한 요인으로 나타났다. 또한 용존태 유기 질소와 용존태 유기 인은 각각 용존태 총 질소와 용존태 총 인 중 약 63%, 46%를 구성하고 있었다. 광 이용 효율(${\alpha}$)과 최대 광합성량($P_m{^B}$)은 동귀(바다숲 조성 3년 경과 해역), 고내(바다숲 조성 1년 경과 해역), 비양도(천연해조장), 금능(갯녹음 해역) 순으로 감소하였다. 또한, 식물플랑크톤의 일차생산력은 해조장이 위치한 해역이 갯녹음 해역에 비해서 높았다. 특히, 연구해역은 무기 질소가 제한된 환경이지만 상대적으로 풍부한 용존태 유기 질소는 높은 일차생산을 유지하기 위한 중요한 요인으로 작용할 것이다. 뿐만 아니라 광합성을 통해 한 시간 만에 전체 식물플랑크톤 탄소량의 약 14%를 생산할 수 있는 것으로 나타났으며, 이는 해조장의 물질순환과 생태적 가치평가를 위한 중요한 자료로 활용할 수 있을 것이다.

와편모조류 Alexandrium affine의 생장에 미치는 용존태 무기 및 유기 영양염(질소와 인)의 영향 (Effects of Dissolved Inorganic and Organic Nutrient (Nitrogen and Phosphorus) on the Growth of Dinoflagellate Alexandrium affine)

  • 오석진;김지혜;박경우;김석윤
    • 해양환경안전학회지
    • /
    • 제27권5호
    • /
    • pp.630-638
    • /
    • 2021
  • 본 연구에서는 와편모조류 Alexandrium affine(LIMS-PS-2345)의 생장에 미치는 용존태 무기 및 유기 영양염의 영향을 조사하였다. 영양염 흡수 동력학 실험에서 A. affine의 최대흡수속도(ρmax)와 반포화상수(Ks)는 질산염에서 77.0 pmol/cell/hr과 17.6 μM, 인산염에서 15.5 pmol/cell/hr과 3.88 μM로 산출되어, 무기영양염에 대하여 높은 요구량 및 낮은 친화성을 가지고 있는 것으로 나타났다. 유기 영양염에 따른 A. affine의 생장속도를 확인한 결과, 유기 질소 urea, glycine와 유기 인 adenosine triphosphate(ATP), glycerol phosphate(Glycerol-P) 첨가구에서 무기 영양염 첨가구의 70 % 이상 생장속도를 보였다. 따라서 낮은 무기 영양염 환경에서 A. affine의 우점화와 종간경쟁에서 우위를 위해서는 용존태 유기 영양염의 이용이 필요할 것으로 생각된다.

Extent and persistence of dissolved oxygen enhancement using nanobubbles

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.427-435
    • /
    • 2016
  • In this study, change in water-dissolved oxygen (DO) was analyzed under various synthetic water qualities and nanobubbles (NBs) application conditions, such as gas type, initial DO as well as water dissolved, suspended and organic matters contents. When oxygen, rather than air, was introduced into nitrogen-desorbed ultra-pure water, the stagnation time was significantly increased. It took ten days for DO concentration to drop back to saturation. The higher the initial DO concentration, the longer particles were observed above saturation due to particle stability improvement. The oxygen mass transfer rate of 0.0482 mg/L/min was found to reach a maximum at an electrolytic concentration of 0.75 g/L, beyond which the transfer rate decreased due to adsorption of negative ions of the electrolyte at the interface. High levels of turbidity caused by suspended solids have become a barrier to dissolution of NBs oxygen into the water solution, and thus affected the transfer performance. On the other hand, by applying NBs for just an hour, up to 7.2% degradation of glucose as representative organic matter was achieved. Thus, NBs technology would maintain a high DO extent for an extended duration, and thus can improve water quality provided that water chemistry is closely monitored during its application.

Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag

  • Noh, Jin H.;Lee, Sang-Hyup;Choi, Jae-Woo;Maeng, Sung Kyu
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.181-188
    • /
    • 2018
  • A sidestream contains the filtrate or concentrate from the belt filter press, filter backwash and supernatant from sludge digesters. The sidestream flow, which heads back into the sewage treatment train, is about 1-3% less than the influent flow. However, the sidestream can increase the nutrient load since it contains high concentrations of phosphorus and nitrogen. In this study, the removal of PO4-P with organic matter characteristics and bacteriological changes during the sidestream treatment via ladle furnace (LF) slag was investigated. The sidestream used in this study consisted of 11-14% PO4-P and 3.2-3.6% soluble chemical oxygen demand in influent loading rates. LF slag, which had a relatively high $Ca^{2+}$ release compared to other slags, was used to remove $PO_4-P$ from the sidestream. The phosphate removal rates increased as the slag particle size decreased 19.1% (2.0-4.0 mm, 25.2% (1.0-2.0 mm) and 79.9% (0.5-1.0 mm). The removal rates of dissolved organic carbon, soluble chemical oxygen demand, color and aromatic organic matter ($UV_{254}$) were 17.6, 41.7, 90.2 and 77.3%, respectively. Fluorescence excitation-emission matrices and liquid chromatography-organic carbon detection demonstrated that the sidestream treatment via LF slag was effective in the removal of biopolymers. However, the removal of dissolved organic matter was not significant during the treatment. The intact bacterial biomass decreased from $1.64{\times}10^8cells/mL$ to $1.05{\times}10^8cells/mL$. The use of LF slag was effective for the removal of phosphate and the removal efficiency of phosphate was greater than 80% for up to 100 bed volumes.