• Title/Summary/Keyword: Dissolved hydrogen

Search Result 210, Processing Time 0.025 seconds

Elucidating H/D-Exchange Mechanism of Active Hydrogen in Aniline and Benzene-1,2-dithiol

  • Ahmed, Arif;Islam, Syful;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2021
  • In this study, the hydrogen/deuterium (HDX) exchange mechanism of active hydrogen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbon (PAH) dissolved in toluene and deuterated methanol by atmospheric pressure photoionization (APPI) is investigated. The comparison of the data obtained using APPI suggests that aniline and benzene-1,2-dithiol contain two exchanging hydrogens. The APPI HDX that best explains the experimental findings was investigated with the use of quantum mechanical calculations. The HDX mechanism is composed of a two-step reaction: in the first step, analyte radical ion gets deuterated, and in the second step, the hydrogen transfer occurs from deuterated analyte to de-deuterated methanol to complete the exchange reaction. The suggested mechanism provides fundamentals for the HDX technique that is important for structural identification with mass spectrometry. This paper is dedicated to Professor Seung Koo Shin for his outstanding contributions in chemistry and mass spectrometry.

Development of a pH/dissolved- oxygen Monitoring System Using HPTS and Rudpp (HPTS, Rudpp를 활용한 pH 및 용존산소 모니터링 시스템 연구)

  • Dong Hyuk Jeong;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.82-87
    • /
    • 2023
  • This study proposes a pH-dissolved-oxygen monitoring system using 8-HydroxyPyrene-1,3,6-trisulfonic acid Trisodium Salt (HPTS) and tris(4,7-diphenyl-1,10-phenanthroline)Ruthenium(II) chloride (Rudpp). Commercial water-quality sensors are electrochemical devices that require frequent calibration and cleaning, are subject to high maintenance costs, and have difficulties conducting measurements in real-time. The proposed pH-dissolved-oxygen monitoring system selects a thin-film sensing layer to measure the change in fluorescence intensity. This change in fluorescence intensity is based on reactions with hydrogen ions in an aqueous solution at a given pH and specific amount of dissolved oxygen. The change in fluorescence intensity is then measured using light-emitting diodes and photodiodes in response to HPTS and Rudpp. This method enables the development of a relatively small, inexpensive, and real-time measureable water-quality measurement system.

Removal of Dissolved Oxygen from the Make-up Water of NPP Using Membrane-based Oxygen Removal System

  • Chung, Kun-Ho;Kang, Duck-Won;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.541-547
    • /
    • 1999
  • Corrosion control, in the end-shield cooling system of Wolsung Nuclear Power Plant, is directly related to the control of dissolved oxygen (DO). The current method, being used to deoxygenate the end-shield cooling water, is a chemical treatment by addition of reducing agent, hydrazine, to react with DO. This method has several limitations including high reaction temperature of hydrazine , unwanted explosive hydrogen gas production, and its intrinsic harmful property. A new approach to remove DO using a membrane-based oxygen removal system (MORS) was tried to overcome limitations of the hydrazine treatment. The DO removal efficiency of the MORS was found to be in the range 87% to 98%: The higher vacuum, the lower water flow rate and the higher water temperature tend to increase the DO removal efficiency.

  • PDF

Combined Effects of Hypoxia and Hydrogen Sulfide on Survival, Feeding Activity and Metabolic Rate of Blue crab, Portunus trituberculatus (꽃게, Portunus trituberculatus의 생존, 섭이활동 및 대사률에 미치는 빈산소와 황화수소의 복합적 영향)

  • KANG Ju-Chan;MATSUDA Osamu;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.549-556
    • /
    • 1995
  • Experiments were carried out to examine the combined effects of hypoxia and hydrogen sulfide on survival, feeding activity and metabolic rata or Blue crab, Portunus trituberculatus. Survival rate of the crab was significantly affected by $\leq2.14mg/l$ dissolved oxygen, and feeding activity was also reduced below 1.41mg/l dissolved oxygen. Metabolic rate of the crab exosed to hypoxia $(\leq3.35mg/l)$ was significantly reduced than that exposed to normoxia. The combined effects of hypoxia $(\leq1.86mg/l)$ and hydrogen sulfide $(12.35 {\mu}g/l)$ on the survival rate were highly toxic than each single effect. Feeding activity was also decreased by the combinedexposure to $\leq1.86mg/l$ dissolved oxygen and $(12.35 {\mu}g/l)$ hydrogen sulfide compared with single effect.

  • PDF

Fundamental evaluation of hydrogen behavior in sodium for sodium-water reaction detection of sodium-cooled fast reactor

  • Tomohiko Yamamoto;Atsushi Kato;Masato Hayakawa;Kazuhito Shimoyama;Kuniaki Ara;Nozomu Hatakeyama;Kanau Yamauchi;Yuhei Eda;Masahiro Yui
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.893-899
    • /
    • 2024
  • In a secondary cooling system of a sodium-cooled fast reactor (SFR), rapid detection of hydrogen due to sodium-water reaction (SWR) caused by water leakage from a heat exchanger tube of a steam generator (SG) is important in terms of safety and property protection of the SFR. For hydrogen detection, the hydrogen detectors using atomic transmission phenomenon of hydrogen within Ni-membrane were used in Japanese proto-type SFR "Monju". However, during the plant operation, detection signals of water leakage were observed even in the situation without SWR concerning temperature up and down in the cooling system. For this reason, the study of a new hydrogen detector has been carried out to improve stability, accuracy and reliability. In this research, the authors focus on the difference in composition of hydrogen and the difference between the background hydrogen under normal plant operation and the one generated by SWR and theoretically estimate the hydrogen behavior in liquid sodium by using ultra-accelerated quantum chemical molecular dynamics (UA-QCMD). Based on the estimation, dissolved H or NaH, rather than molecular hydrogen (H2), is the predominant form of the background hydrogen in liquid sodium in terms of energetical stability. On the other hand, it was found that hydrogen molecules produced by the sodium-water reaction can exist stably as a form of a fine bubble concerning some confinement mechanism such as a NaH layer on their surface. At the same time, we observed experimentally that the fine H2 bubbles exist stably in the liquid sodium, longer than previously expected. This paper describes the comparison between the theoretical estimation and experimental results based on hydrogen form in sodium in the development of the new hydrogen detector in Japan.

Fabrication and Application of Palladium Coated Fiber-Optic Hydrogen Detection Sensor (팔라듐이 코팅된 광섬유 수소 검출 센서 제작과 응용)

  • Kim, Kwang Taek;Lee, Sang Won;Kim, Dong Geun;Choi, Nu Ri;Lee, Jong Ryeok;Baik, Se Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.160-164
    • /
    • 2018
  • We have proposed a hydrogen detection sensor based on a Pd (palladium)-coated, single-mode, optical fiber. The experimental results demonstrated that the sensor could detect hydrogen in air as well as in insulation oil. The influence of Pd film thickness and environmental temperature on response time and sensitivity was analyzed. The reflected optical power at the optical-fiber/Pd interface decreased as the concentration of hydrogen increased, in both air and the insulation oil. The sensor showed 0.75 dB of optical power variation when the concentration of dissolved hydrogen was saturated in the insulation oil.

Control of redtide microbes with hydrogen peroxide and yellow loess (과산화수소와 황토를 이용한 적조생물의 제어)

  • Seok, Jong-Hyuk;Jun, Se-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.491-497
    • /
    • 2009
  • The purpose of this study is to propose a method of controlling redtide microbes which grow abundantly and form harmful algal bloom in eutrophic waterbody with yellow loess and hydrogen peroxide. In the laboratory test, hydrogen peroxide was applied to single species of C. polykrikoides and multispecies of redtide microbes. The seawater was evaluated by the pre-test analysis including chlorophyll-a, luminance and transmittance. The test results showed that both single and mixed species of redtide microbes could be controlled with the dose of 30mg $H_2O_2/L$. Residual hydrogen peroxide was completely decomposed with the addition of powdered yellow loess at 2g/L~10g/L. However, the decomposition rate of residual hydrogen peroxide for sintered granular yellow loess was relatively low compared to the use of powdered one. With the addition of dissolved oxygen concentration was increased at a rate of 0.013 mg DO/mg $H_2O_2$, which is a little lower than the one predicted theoretically. No evidence for any detrimental effects on Artemia, a type of brine shrimps, was shown up to the concentration of 100mg $H_2O_2/L$.

Preliminary Study on Reaction Mechanism for Energy Generation using Hydride and Hydrogen Peroxide (수소화물과 과산화수소를 적용한 에너지 생성 메커니즘 연구)

  • Seo, Seong-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.300-303
    • /
    • 2012
  • Global warming has been a serious problem due to excessive emissions of carbon dioxide from the increase of energy consumption. The present study investigates an energy generation mechanism that does not produce carbon dioxide and oxides of nitrogen. A reaction mechanism including sodium borohydride and hydrogen peroxide has been introduced and as a result, thermal energy can be generated from combustion of hydrogen with oxygen. Sodium borohydride dissolved in water reacting with liquid hydrogen peroxide may reveal maximum adiabatic reaction temperature of 1795 K at a mixture ratio of 0.89.

  • PDF

A study on the relationship between concentration of phosphorus, turbidity, and pH in water and soil (물과 토양에서 인의 농도, 탁도 그리고 pH와의 관계에 관한 연구)

  • Min, Young-Hong;Hyun, Dae-Yoeung;Eum, Chul-Hun;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.304-309
    • /
    • 2011
  • In this research, behaviour of turbidity and phosphorus in water and soil dependent upon pH and a change of water was studied. Phosphorus dissolve rate from turbidity was increased for water if potential of hydrogen was less than pH 4 or more than pH 7. Turbidity release rate from soil was increased with pH. Turbidity release rate from soil was drastically increased for water if potential of hydrogen was more than pH 4. turbidity release rate from soil was stabilized more than pH 6. Dissolved phosphorus was increased from 2 hours to 24 hours and stabilized in 24 hours. Turbidity was reached the peak of 24 hours and decreased from 24 hours to 96 hours. Turbidity and dissolved phosphorus was decreased for water if these samples were changed a overlying water. Behaviour of turbidity was analogous to dissolved phosphorus when potential of hydrogen was increased from pH 6 to pH 10 and a change of overlying water was increased from 1 time to 4 times. These results suggest that phosphorus dissolve rate and turbidity were directiy correlated with pH. These results are of great importance in lakes because most lakes have a pH in the range of pH 7-10.

The characteristic change of water using the wet-plasma (습식 플라즈마에 의한 물의 특성 변화)

  • Lee, Jae-Dong;Park, Hong-Jae;Lee, Dong-Hun;Kim, Young-Ju;Park, Jae-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1151-1154
    • /
    • 2003
  • Ultraviolet rays, OH H O radical and $O_3$ produced by the streamer discharge in water are widely used to deactivate microorganisms and remove organic contaminants in water and the dominant factor of these decomposition is the oxidized reaction of hydrogen peroxide and dissolved $O_3$ in water. In this paper, the barrier discharge was used to create plasma in a gas, liquid and solid medium and the electrode with the reactor combined barrier with packed type(BPR) was made as noncontact way against water so that the effect of water characteristic change by the erosion of electrodes exposing in water should be minimized. The active radical and $O_3$ gas generated in plasma region were reacted into the water as electrode so that at the same time a dissolved $O_3$ and hydrogen peroxide were formed in water and The change of pH and conductivity were measured.

  • PDF