• Title/Summary/Keyword: Dissolved carbon

Search Result 683, Processing Time 0.023 seconds

A Study of the Presence of Carbonic Acid and Other Potentially Hazardous Substances in Cheongsong Mineral Water (청송약수의 탄산과 유해 가능성 물질 존재에 관한 연구)

  • Lee, Sung-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.1
    • /
    • pp.132-136
    • /
    • 2021
  • The purpose of this study is to measure the levels of eluted and dissolved CO2, and CO, volatile organic substances and radiation composition of Cheongsong mineral water which were collected from November 2019 to July 2020 during the autumn, spring, and summer seasons at collection points located in the upper, middle and lower spring waters. Data of the upper, middle and lower spring waters include the following: the amount of eluted water (average value±standard deviation, mL/min) was 30.07±0.52, 15.03±0.16, 23.73±0.42, and the amount of CO2 gas was 1,000 ppm or more. In addition, there was no detection of CO or total volatile organic substances (TVOC) and the radiation dose was 0.08 to 0.13. μSv/h. A blank test value of 0.08 to 0.10 μSv/h, when compared with the median value, showed a high value of 0.02 μSv/h, and the uranium test results provided by the Cheongsong-gun Office were 0.0118 mg/L (date 2019.06.18) and 0.0091 mg/L (date 2020.06.04.) respectively, which was less than the permission limit of 0.03 mg/L. However, it is believed that further research using more precise devices is needed in order to guarantee the safety and health of the water.

Effects of Additional Bubbling on RH Vacuum Degassing Process with Water Model Experiment (수모델을 사용한 RH 진공 탈가스장치에서의 추가 버블링 효과)

  • Jang, Young-Hwan;Kim, Young-Tae;Yi, Kyung-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.424-429
    • /
    • 2010
  • In the RH process, it is possible to obtain quicker processing times by enhancing the decarburization rates at a low carbon range of steel melt through Ar gas injection into the vacuum vessel. The RH decarburization reaction was simulated through a dissolved oxygen removal reaction by injecting nitrogen into a 1/8 scale RH water model system. The gas nozzles for the N$_{2}$ injection into the vacuum vessel were located at the lowest level of the vessel's outer wall. The nitrogen bubbling in the vacuum vessel resulted in an increase in the reaction rate constant, which rose in accordance with an increase in the bubbling flow rate and number of nozzles used. However, there was almost no variation in the reaction rate constant, which depended on the horizontal positions of the bubbling nozzles.

Compatibility Study between 316-series Stainless Steel and Sodium Coolant (316계 스테인리스강과 소듐 냉각재와의 양립성 연구)

  • Kim, Jung Hwan;Kim, Jong Man;Cha, Jae Eun;Kim, Sung Ho;Lee, Chan Bock
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.410-416
    • /
    • 2010
  • Studies were carried out to establish the technology for sodium-clad compatibility and to analyze the compatibility behavior of the Sodium-cooled Fast Reactor (SFR) cladding material under a flowing sodium environment. The natural circulation facility caused by the thermal convection of the liquid sodium was constructed and the 316-series stainless steels were exposed at $650{^{\circ}C}$ liquid sodium for 1458 hours. The weight change and related microstructural change were analyzed. The results showed that the quasi-dynamic facility represented by the natural convection exhibited similar results compared to the conventional dynamic facility. Selective leaching and local depletion of the chromium, re-distribution of the carbide, and the decarburization process took place in the 316-series stainless steel under a flowing sodium environment. This process decreased as the sodium flowed along the channel, which was caused by the change in the dissolved oxygen and carbon activity in the liquid sodium.

Analysis Temporal and Spatial Changes of Water Quality in Domestic Hydropower Dam Reservoirs (국내 수력발전댐 저수지 수질의 시공간 변화 분석)

  • Park, Kyoung-deok;Kang, Dong-hwan;Jo, Won Gi;Yang, Minjune
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.373-388
    • /
    • 2022
  • This study analyzed the temporal and spatial characteristics of water quality for five hydropower dam reservoirs in South Korea. Water temperature, pH, dissolved oxygen, and chlorophyll-a (Chl-a) showed high fluctuations in summer and autumn at all reservoirs, indicating the existence of seasonal effects. At all five reservoirs, the concentrations of suspended solids (SS) and total nitrogen (TN) fell under the "slightly bad" category and those of total organic carbon (TOC) fell under the "slightly good" category or higher, according to "the standard for living environment of lake water quality." Variations in the concentration ranges and degrees of change in SS, TN, and TOC among reservoirs were observed, indicating the influences of rainfall, surrounding environments, and seasonal changes. Daecheong and Namgang Dam showed high Chl-a concentrations in summer, indicating that the metabolism of microbial communities, such as algae, was active.

Assessment of flow-accelerated corrosion-induced wall thinning in SA106 pipes with elbow sections

  • Seongin Moon;Jong Yeon Lee;Kyung-Mo Kim;Soon-Woo Han;Gyeong-Geun Lee;Wan-Young Maeng;Sebeom Oh;Dong-Jin Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1244-1249
    • /
    • 2024
  • A combination of flow-accelerated corrosion (FAC) tests and corresponding computational fluid dynamics (CFD) tests were performed to determine the hydrodynamic parameters that could help predict the highly susceptible location to FAC in the elbow section. The accelerated FAC tests were performed on a specimen containing elbow sections fabricated using commercial 2-inch carbon steel pipe. The tests were conducted at flow rates of 9 m/s under the following conditions: water temperature of 150 ℃, dissolved oxygen <5 ppb, and pH 7. Thickness reduction of the specimen pipe due to FAC was measured using ultrasonic testing. CFD was conducted on the FAC test specimen, and the turbulence intensity, and shear stress were analyzed. Notably, the location of the maximum hydrodynamic parameters, that is, the wall shear stress and turbulent intensity, is also the same location with maximum FAC rate. Therefore, the shear stress and turbulence intensity can be used as hydrodynamic parameters that help predict the FAC-induced wall-thinning rate. The results provide a method to identify locations susceptible to FAC and can be useful for determining inspection priority in piping systems.

Gas ebullition associated with biological processes in radioactively contaminated reservoirs could lead to airborne radioactive contamination

  • E.A. Pryakhin;Yu.G. Mokrov;A.V. Trapeznikov;N.I. Atamanyuk;S.S. Andreyev;A.A. Peretykin;K. Yu. Mokrov;M.A. Semenov;A.V. Akleyev
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4204-4212
    • /
    • 2023
  • Background: Storage reservoirs of radioactive waste could be the source of atmospheric pollution due to the efflux of aqueous aerosol from their water areas. The main mechanism of formation of aqueous aerosols is the collapse of gas bubbles at the water surface. In this paper, we discuss the potential influence of biological factors on gas ebullition in the water areas of the radioactively contaminated industrial reservoirs R-9 (Lake Karachay) and R-4 (Metlinsky pond) of the Mayak PA. The emission of the released non-dissolved gases captured with gas traps in reservoir R-9 was (88-290) ml/m2 per day (2015) and in reservoir R-4 (270-460) ml/m2 per day (2016). The analysis of gas composition in reservoir R-4 (60% methane, 35% nitrogen, 2.4% oxygen, 1.5% carbon dioxide) confirms their biological origin. It is associated with the processes of organic matter destruction in bottom sediments. The major source of organic matter in bottom sediments is the dying phytoplankton developing in these reservoirs. Conclusion: The obtained results form the basis to set a task to quantify the relationship between the phytoplankton development, gases ebullition and radioactive atmosphere contamination.

Geochemical Studies of $CO_2$-rich Waters in Chojeong area II. Isotope Study (초정지역 탄산수의 지화학적 연구 II. 동위원소)

  • 고용권;김천수;배대석;최현수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 1999
  • The $CO_2$-rich waters in the Chojeong area are characterized by low pH (5.0~5.8), high $CO_2$pressure (about 1 atm) and high amounts of total dissolved iou (up to 989 mg/L) and chemically belong to Ca-HC $O_3$type. The oxygen. deuterium and tritium isotope data indicate that the mixing process occurred between $CO_2$-rich water and surface water and/or shallow groundwaters and also suggest that the $CO_2$-rich water has been derived from meteoric waters. According to $\delta$$^{13}$ C values (-8.6~-5.3$\textperthousand$). the $CO_2$ in the water is attributed from deep seated $CO_2$gas. The high dissolved carbon (-14.4~-6.8$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the granitic terrain might be affected by $CO_2$-rich water, whereas the dissolved carbon (-17.9~-15.2$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the metamorphic terrain is likely controlled by soil $CO_2$ and from the reaction with calcite in phyllite. Sulfur isotope data (+3.5~+11.3$\textperthousand$,$\delta$$^{34}$ $S_{SO4}$) also support the mixing process between $CO_2$-rich water and shallow groundwater. Strontium isotopic ratio ($^{87}$ Sr/$^{86}$ Sr) indicates that the $CO_2$-rich water (0.7138~0.7156) is not related to vein calcite (0.7184) of Buak mine or calcite (0.7281~0.7346) in phyllite. By nitrogen isotope ($\delta$$^{15}$ $N_{NO3}$) the sources of nitrogen (up to 55.0 mg/L, N $O_3$) in the $CO_2$-rich water are identified as fertilizer and animal manure. It also indicates the possibility of denitrification during the circulation of nitrogen in the Chojeong area. The possible evolution model of the $CO_2$-rich water based on the hydrochemical and environmental isotopic data was proposed in this study. The $CO_2$-rich waters from the Chojeong area were primarily derived from the reaction with granite by supply of deep seated $CO_2$. and then the $CO_2$-rich water was mixed and diluted with the local groundwater.ter.

  • PDF

Geomicrobiological Behavior of Heavy Metals in Paddy Soil Near Abandoned Au-Ag Mine Supplied with Carbon Sources (탄소원을 공급한 폐금은광산 주변 논토양 내 중금속의 지구미생물학적 거동 연구)

  • Ko, M.S.;Lee, J.U.;Park, H.S.;Shin, J.S.;Bang, K.M.;Chon, H.T.;Lee, J.S.;Kim, J.Y.
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.413-426
    • /
    • 2009
  • The study was conducted to investigate the effects of indigenous bacteria on geochemical behavior of toxic heavy metals in contaminated paddy soil near an abandoned mine. The effects of sulfate amendment to stimulate microbial sulfate reduction on heavy metal behaviors were also investigated. Batch-type experiments were performed with lactate or glucose as a carbon source to activate indigenous bacteria in the soil under anaerobic condition for 100 days. Sulfate (250 mg/L) was artificially injected at 60 days after the onset of the experiments. In the case of glucose supply, solution pH increased from 4.8 to 7.6 while pH was maintained at 7~8 in the lactate solution. The initial low pH in the case of glucose supply likely resulted in the enhanced extraction of Fe and most heavy metals at the initial experimental period. Lactate supply exerted no significant difference on the amounts of dissolved Zn, Pb, Ni and Cu between microbial and abiotic control slurries; however, lower Zn, Pb and Ni and higher Cu concentrations were observed in the microbial slurries than in the controls when glucose supplied. Sulfate amendment led to dramatic decrease in dissolved Cr and maintenance of dissolved As, both of which had gradually increased over time till the sulfate injection. Black precipitates formed in solution after sulfate amendment, and violarite($Fe^{+2}{Ni^{+3}}_2S_4$) was found with XRD analysis in the microbial precipitates. Conceivably the mineral might be formed after Fe(III) reduction and microbial sulfate reduction with coprecipitation of heavy metal. The results suggested that heavy metals which can be readily extracted from contaminated paddy soils may be stabilized in soil formation by microbial sulfate reduction.

Applications of Radiocarbon Isotope Ratios in Environmental Sciences in South Korea (방사성탄소동위원소비 분석을 적용한 우리나라 환경과학 연구)

  • Neung-Hwan Oh;Ji-Yeon Cha
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.281-302
    • /
    • 2023
  • Carbon is not only an essential element for life but also a key player in climate change. The radiocarbon (14C) analysis using accelerator mass spectrometry (AMS) is a powerful tool not only to understand the carbon cycle but also to track pollutants derived from fossil carbon, which have a distinct radiocarbon isotope ratio (Δ14C). Many studies have reported Δ14C of carbon compounds in streams, rivers, rain, snow, throughfall, fine particulate matter (PM2.5), and wastewater treatment plant effluents in South Korea, which are reviewed in this manuscript. In summary, (1) stream and river carbon in South Korea are largely derived from the chemical weathering of soils and rocks, and organic compounds in plants and soils, strongly influenced by precipitation, wastewater treatment effluents, agricultural land use, soil water, and groundwater. (2) Unprecedentedly high Δ14C of precipitation during winter has been reported, which can directly and indirectly influence stream and river carbon. Although we cannot exclude the possibility of local contamination sources of high Δ14C, the results suggest that stream dissolved organic carbon could be older than previously thought, warranting future studies. (3) The 14C analysis has also been applied to quantify the sources of forest throughfall and PM2.5, providing new insights. The 14C data on a variety of ecosystems will be valuable not only to track the pollutants derived from fossil carbon but also to improve our understanding of climate change and provide solutions.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.