DOI QR코드

DOI QR Code

Effects of Additional Bubbling on RH Vacuum Degassing Process with Water Model Experiment

수모델을 사용한 RH 진공 탈가스장치에서의 추가 버블링 효과

  • Jang, Young-Hwan (Department of Materials Science and Engineering, Seoul National University,Research Center for Iron and Steel, RIAM, Seoul National University) ;
  • Kim, Young-Tae (Department of Materials Science and Engineering, Seoul National University,Research Center for Iron and Steel, RIAM, Seoul National University) ;
  • Yi, Kyung-Woo (Department of Materials Science and Engineering, Seoul National University,Research Center for Iron and Steel, RIAM, Seoul National University)
  • 장영환 (서울대학교 재료공학부,서울대학교 신소재 공동연구소 철강연구센터) ;
  • 김영태 (서울대학교 재료공학부,서울대학교 신소재 공동연구소 철강연구센터) ;
  • 이경우 (서울대학교 재료공학부,서울대학교 신소재 공동연구소 철강연구센터)
  • Received : 2009.11.18
  • Published : 2010.05.22

Abstract

In the RH process, it is possible to obtain quicker processing times by enhancing the decarburization rates at a low carbon range of steel melt through Ar gas injection into the vacuum vessel. The RH decarburization reaction was simulated through a dissolved oxygen removal reaction by injecting nitrogen into a 1/8 scale RH water model system. The gas nozzles for the N$_{2}$ injection into the vacuum vessel were located at the lowest level of the vessel's outer wall. The nitrogen bubbling in the vacuum vessel resulted in an increase in the reaction rate constant, which rose in accordance with an increase in the bubbling flow rate and number of nozzles used. However, there was almost no variation in the reaction rate constant, which depended on the horizontal positions of the bubbling nozzles.

Keywords

Acknowledgement

Grant : 연속주조 몰드 내 기포 및 개재물 거동 최적 제어를 위한 해석 모델 개발

Supported by : POSCO

References

  1. M. K. Sun, I.-H. Jung, and H.-G. Lee, Met. Mater. Int. 14, 791 (2008) https://doi.org/10.3365/met.mat.2008.12.791
  2. C. W. Seo, S.-H. Kim, S. J. Ko, S. H. Kim, and K. Y. Jo, J. Kor. Inst. Met. & Mater. 46, 437 (2008)
  3. Y. G. Park and K. Y. Yi, ISIJ Int. 43, 1403 (2003) https://doi.org/10.2355/isijinternational.43.1403
  4. Y. G. Park, W. C. Doo, K. W. Yi, and S. B. An, ISIJ Int. 40, 749 (2000) https://doi.org/10.2355/isijinternational.40.749
  5. Yasuo Kishimoto, Koji Yamaguchi, Toshikazu Sakuraya, and Tetuya Fuzii, ISIJ Int. 33, 391 (1993) https://doi.org/10.2355/isijinternational.33.391
  6. H. J. Hong, Y. G. Park, and K. Y. Yi, J. Kor. Inst. Met. & Mater. 36, 1544 (1998)
  7. J. C. Charpentier, Trans. IchemE. 60, 131 (1982)
  8. J. H. Zong, H. K. Park, and J. K. Lee, ISIJ Int. 30, 748 (1990) https://doi.org/10.2355/isijinternational.30.748
  9. S. Kitamura, M. Yano, K. Harashima, and N. Tsutsumi, Tetsu-to-Hagane 31, 80 (1994)
  10. Shigeru Inoue, Yoshikazu Furuno, Tsutomu Usui, and Shinobu Miyahara, ISIJ Int. 32, 120 (1992) https://doi.org/10.2355/isijinternational.32.120
  11. Tatsuro Kuwabara, Kazusige Umezawa, Kouji Mori, and Hisashi Watanabe, Transactions ISIJ 28, 306 (1988)
  12. B. S. Lee, M. S. Thesis, p.9-11, Seoul University, Seoul (2002)
  13. W. C. Doo, M. S. Thesis, p.5-12, Seoul University, Seoul (2000)