• Title/Summary/Keyword: Dissolved carbon

Search Result 681, Processing Time 0.028 seconds

Characterization of Aqueous Solution Pretreatment for Serpentine Used Carbondioxide Sequestration Material (이산화탄소 포획 원료용 사문석의 수용액 전처리 평가)

  • Choi, Weon-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.340-347
    • /
    • 2008
  • Dissolution process of serpentine in distilled water was systematically investigated for study on pre-treatment of serpentine which was a candidate material for carbon dioxide sequestration. The metallic ions(Ca, Si, Mg etc.) were dissolved in distilled water at ambient condition and their concentrations were changed with dissolution time. The precise evaluation of dissolution process for serpentine dissolved solvent was performed by ion conductivity and pH measurement. Serpentine dissolution in distilled water was evaluated as a stable pre-treatment process without changes of crystallographic structure and chemical structure changes.

Performance Research of a Jacket Cooling Water System in a Diesel Electric Generation (디젤발전 자켓냉각시스템 열성능 향상 연구)

  • Lee, Jae-Keun;Moon, Jeon-Soo;Yoon, Seok-Won;Park, Pill-Yang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2009
  • One of the most efficient techniques improving the heat transfer performance of a diesel electric generation is a corrosion control in jacket cooling water system. The environmental parameters most affecting corrosion are dissolved salt concentration, temperature, and pH of cooling water. No corrosion occurs in carbon steel probe at pH 11 in normal operating condition of diesel electric generation cooling water. pH control agent in this study is trisodium phosphate. pH control appears to be the most convenient way to enhance the thermal performance of a diesel electric generation.

A Study on the Age Degradation Kinetics of Pole Transformer Oil (주상변압기 절연유의 경년열화반응 속도론에 관한 연구)

  • 남영우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.99-105
    • /
    • 1997
  • In the paper, aging of insulating oil in pole transformer has been studied by performing accelerated thermal aging test. Dissolved gases were extracted by air bubbling method. Concentration of dissolved gases were modified by extraction ratio of each gases in insulating oil. Aging of insulating materials were proceeded by thermal degradation and oxidation reaction. Both of the reactions followed zeroch order kinetics. Formation rate equations for hydrocarbons, carbon oxides, and hydrogen were derived. It was conformed by gas analysis and UV-Visible spectrophotometric method that iron core and copper coil in pole transformer act as catalyst during the aging process.

  • PDF

전기집진기술의 현황과 장래전망(I)

  • 고명삼;이달우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.24-33
    • /
    • 1997
  • In this paper, aging of insulating oil in pole transformer has been studied by performing accelerated thermal aging test. Dissolved gases were extracted by air bubbling method. Concentration of dissolved gases were modified by extraction ratio of each gases in insulting oil. Aging of insulting materials were proceeded by thermal degradation and oxidation reaction. Both of the reactions followed zeroth order kinetics. Formation rate equations for hydrocarbons, carbon oxides, and hydrogen were derived. It was conformed by gas analysis and UV-visible spectrophotometric method that iron core and copper coil in pole transformer act as catalyst during the aging process.

  • PDF

Addressing the concept of Methane and Carbon emissions by wetlands and the Status of Wetlands India: A Review

  • Farheen, Kaggalu Shaista;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.462-462
    • /
    • 2022
  • Wetlands are one of the most vital natural habitats on the planet. India is incredibly blessed to have a number of multifunctional wetland ecosystems. Wetlands, in addition to their functional importance, can act as sources or sinks for greenhouse gases (GHGs) depending on their intrinsic factors. Carbon (CO2) and Methane (CH4) are the major greenhouse gases (GHG's) emitted in wetlands. It is demonstrated that, despite having 4.6 percent of its area covered by natural or man-made wetlands, being home to a large number of wetlands, and being the world's second largest cultivator of paddy, India's wetlands, including paddy fields that are intermittently flooded as typical wetlands, have been very poorly studied in terms of GHG emissions. The purpose of this paper is to examine the status of Indian wetlands and wetlands in terms of CH4 and CO2 emissions. The present study also reviews various literature to provide the equations, parameters that are required for estimating carbon and methane and some of the best strategies for conserving carbon in wetlands. The findings suggest that both non-manipulative and manipulative measures can be used to improve Carbon Sequestration (CS). Non-manipulative measures aim to improve CS by increasing the spatial extent of wetlands, whereas manipulative measures aim to change the characteristics of specific wetland components that influence CS. Uncertainty in carbon dynamics projections under changing environmental conditions is caused by a number of Knowledge gaps: i) There is a lack of knowledge on how organic matter mineralizes and partitions into carbon dioxide, methane, and dissolved organic carbon, ii) With the notable exception of methane dynamics, models that represent the dynamic interaction of processes and their controls have yet to be established. As a result, more research is needed to fully understand the importance of wetlands in terms of GHG emissions and carbon sequestration in India.

  • PDF

Control of dissolved Oxygen Concentration and Specific Growth Rate in Fed-batch Fermentation (유가식 생물반응기에서의 용존산소농도 및 비성장속도의 제어)

  • Kim, Chang-Gyeom;Lee, Tae-Ho;Lee, Seung-Cheol;Chang, Yong-Keun;Chang, Ho-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • A novel control method with automatic tuning of PID controller parameters has been developed for efficient regulation of dissolved oxygen concentration in fed-batch fermentations of Escherichia coli. Agitation speed and oxygen partial pressure in the inlet gas stream were chosen to be the manipulated variables. A heuristic reasoning allowed improved tuning decisions from the supervision of control performance indices and it coule obviate the needs for process assumptions or disturbance patterns. The control input consisted of feedback and feedforword parts. The feedback part was determined by PID control and the feedforward part is determined from the feed rate. The proportional gain was updated on-line by a set of heuristics rules based on the supervision of three performance indices. These indices were output error covariance, the average value of output error, and input covariance, which were calculated on-line using a moving window. The integral and derivative time constants were determined from the period of output response. The specific growth rate was maintained at a low level to avoid acetic acid accumulation and thus to achieve a high cell density. The specific growthe rate was estimated from the carbon dioxide evolution rate. In fed-batch fermentation, the simutaneous control of dissolved oxygen concentration (at 0.2; fraction of saturated value) and specific growth rate (at 0.25$hr^{-1}$) was satisfactory for the entire culture period in spite of the changes in the feed rate and the switching of control input.

  • PDF

Characteristics of Dissolved Organic Matter(DOM) Based on Molecular Weight Fractions and Fluorescence Properties in the Downstream Nakdong River (낙동강 하류 수역에서 분자량 크기 및 형광특성을 고려한 용존유기물질 특성)

  • Ji, Hwaseong;Kim, Mihee;Lee, Youjung;Son, Heejong
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.194-205
    • /
    • 2020
  • The characteristics and behavior of dissolved organic matter (DOM) were determined by analyzing the molecular weight fractions and fluorescence properties of water samples in the downstream Nakdong River. Biogeochemical water quality parameters and fluorescent dissolved organic matter (FDOM) were analyzed at five sampling points in the downstream area of the Nakdong River January-August 2019. The molecular weight fractions of the DOM were separated by the Liquid Chromatography-Organic Carbon Detection (LC-OCD). The DOM predominantly comprised humic substances, followed by the building blocks, low molecular weight neutrals and biopolymers. The hydrophobic (aromatic) and hydrophilic properties were shown as coexisting, as most of the SUVA254nm values were under four. The FDOM was characterized as humic-like (FDOMH) with allochthonous origin and protein-like (FDOMP) with autochthonous origin; the FDOMH with autochthonous origin was also identified. The FDOMH relies on the aromaticity of the allochthonous organic matter and increases during summer. The FDOMH and FDOMP, which depend on the biodegradable dissolved organic matter from phytoplankton, were highly fluorescent in winter. The allochthonous organic matter was the dominant factor contributing to the behavior of the DOM, externally introduced to the river by rainfall. The FDOM only minimally contributed to the behavior of the DOM. It can be explained as the seasonal characteristics of the DOM, varied by the source of the organic matter.

Multisample Extraction system for Solid Phase Extraction of Dissolved Organic Compounds from Sea Water (해수로부터 용존 윤기물의 Solid Phase Extraction을 위한 다수 시료 처리 장치)

  • Cho Ki Woong;Jung Kyungwha;Shin Jongheon;Kim Suk Hyun;Hong Gi-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.3
    • /
    • pp.34-40
    • /
    • 2000
  • A multisample extraction device was newly designed for efficient extraction of dissolved lipophillic organic compounds from sea water sample. This device allowed extraction of organic compounds from up to 96 sample at a time using 96 multifolder on the principle of solid phase extraction with commercially available octadecyl silane (ODS) cartridges. The recovery yield of the new divice was higher than 90 % while that of conventional liquid-liquid extraction process are only 60 - 70 %. The amount of solvent required for the new device could be reduced to less than 20㎖ per 1ℓ of sample while 1 - 2 ℓ of solvent were used in the conventional liquid-liquid extraction process. The usefulness of this novel method was demonstrated with sea water samples collected from Yellow sea, and the qualitative and quantitative analyses results of the dissolved hydrocarbon showed this method was superior to that of conventional liquid-liquid extraction process in efficiency and reliability.

  • PDF

Evaluation of the performance and the removal characteristics of natural organic matter in a modular mobile water production system (모듈형 이동식 물생산 시스템 운전 성능 및 자연 유기물 제거 거동 평가)

  • Hwang, Yuhoon;Yang, Philje;Song, Jimin;Hong, Minji;Choi, Changhyung;Ko, Seokoh;Kim, Dogun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.55-65
    • /
    • 2018
  • It is necessary to develop a mobile water production system in order to provide stable water supply in case of disasters such as floods or earthquakes. In this study, we developed a modular mobile water production system capable of producing water for various uses such as domestic water and drinking water while improving applicability in various raw water sources. The water production system consists of three stages of filtration (sand filtration - activated carbon filtration - pressure filtration) to produce domestic water and an additional reverse osmosis process to produce drinking water. In laboratory and field experiments, the domestic water production system showed excellent treatment efficiency for particulate matter, but showed limitations in the treatment of dissolved substances such as dissolved organic matter. In addition, ultraviolet irradiation was considered as additional disinfection step, because it does not form precipitates of manganese oxides after disinfection. Reverse osmosis process was added to increase the removal efficiency of dissolved substances and the treated water satisfied drinking water quality standards. Fluorescence analysis of dissolved organic matter showed that the fulvic acid-like substances in raw water was successfully removed in the reverse osmosis process. The mobile water production system developed in this study is expected to be used not only in water supply in case of disaster, but also widely used in islands and rural area.

Effects of Humic Substances on the Changes of Dissolved Organic Matter Characteristics by Biodegradation (생분해 과정 중 용존 유기물 특성 변화에 미치는 휴믹물질의 영향)

  • Park, Min-Hye;Lee, Bo-Mi;Lee, Tae-Hwan;Hur, Jin;Yang, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.419-424
    • /
    • 2009
  • Characteristics of humic substances on the changes in dissolved organic matter (DOM) characteristics by biodegradation was investigated using three types of the artificial water samples composed of glucose and Suwannee River fulvic acid (SRFA). Some selected DOM characteristics including the specific UV absorbance (SUVA), the synchronous fluorescence spectra and the molecular weight (MW) were compared for the artificial water samples before and after 28-day microbial incubation. The changes of the DOM characteristics were minimal for SRFA during the incubation whereas they were significant for glucose. SUVA, dissolved organic carbon (DOC)-normalized fluorescence intensity, and MW values of glucose increased, suggesting that such labile organic compounds could be exclusively transformed into more humidified materials by biodegradation. For glucose-SRFA mixture, the selected DOM characteristics were greater than those estimated using the assumption that the individual changes of either glucose or SRFA are conservative for the mixture of the two materials. Our results suggest that the presence of humic substances (HS) may lead to the enhancement of the formation of refractory organic materials during biodegradation of labile compounds. Detailed analyses of size exclusion chromatography (SEC) revealed that the enhancement occurred for the DOM mixture with a MW range between 500 Da to 4000 Da.