• Title/Summary/Keyword: Dissociation

Search Result 1,006, Processing Time 0.029 seconds

The Dissociation Constant of Phenol Red Indicator in Mixed Solvents (혼합용매중의 지시약 Phenol Red의 해리정수)

  • 김양배
    • YAKHAK HOEJI
    • /
    • v.20 no.1
    • /
    • pp.41-43
    • /
    • 1976
  • The dissociation constant of phenol red indicator in mixed solvents was studied. Methanol and ethanol were employed as solvents and studied the changes of pK values of indicator according to the kind and concentration of organic solvent which is mixed into water solution. The effect of methanol solvent on pK is negligible at 40%, 60% and 80% mixing. While in the case of ethanol, the effect of above 40% mixing is not negligible.

  • PDF

THE DISSOCIATION RATE OF $^1O_2(^1Δg)$ DIMOL IN SOLUTION PHASE

  • Chou, Pi-Tai;Chen, Youn-Chan
    • Journal of Photoscience
    • /
    • v.6 no.3
    • /
    • pp.135-139
    • /
    • 1999
  • The ratio of dissociation rate $textsc{k}$-acversus the radiative decay rate $textsc{k}$D of the 1O2(1Δg) dimol has been determined to be $1.5\times$109 by its relaxation dynamcis in combination with a two-step O2((1Δg) sensitizing tetratert-butylphthalocoyanine luminescence. Consequently, with a known $textsc{k}$D value of 1.2 $\times$103S-1 , 10$textsc{k}$-ac has been extracted to be 1.8 $\times$1012S-1 CDCl3.

  • PDF

Photodissociation Dynamics of$H_2O_2$ at 280-290 nm

  • Baek, Seon Jong;Sin, Seung Geun;Park, Chan Ryang;Kim, Hong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.256-260
    • /
    • 1995
  • Laser induced fluorescence spectra of OH produced from photodissociation of $H_2O_2$ at 280-290 nm in the gas phase have been observed. By analyzing the Doppler profiles, the anisotropy parameter($\beta$ =-0.7) and the center of mass translational energy of the fragments have been measured. The measured energy distribution is well described by an impulsive model. The excited state leading to dissociation is found to be of 1Au symmetry. The dissociation from this state is prompt and direct with the fragment OH rotating in the plane perpendicular to the O-O bond axis.

Hydrogen Generation by Electrical Discharge through Metal/Water System

  • G. J. Kang;S. Y. Cha;Lee, W. M.;Park, Y. M.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.111-114
    • /
    • 1996
  • Hydrogen generation by dissociation of water is described. The major force for the dissociation comes from the oxidation potential of the reactive metal reacting with water whereas the minor role is played by electrical discharge which helps sustain the reaction. A premixed reactive metal/water system undergoes a fast hydrogen generation upon the ignition by an electrical pulse. In another method the reactive metal can be fed into the discharge. Some characteristics of the methods are discussed.

  • PDF

The Analysis of Dissociation Properties According to Gas Hydrate Saturation and Depressurization Rate (가스하이드레이트 포화율 및 감압률에 따른 해리특성 분석)

  • An, Seung-Hee;Chon, Bo-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.54-59
    • /
    • 2015
  • The gas hydrate of 10 trillion tons are buried under continental slope in the world(permafrost : 2%, marine continental slope: 98%), but technology for the the commercial gas recovery has not developed yet. There are normally four representative recovery methods: depressurization method, thermal stimulation method, inhibition injection method, and displacement method. This study focuses on change of dissociation time and gas production according to gas hydrate saturation rate and depressurization rate. It was found that the correlation between depressrization rate and dissociation time was like as $Y=0.0004X^2-0.499X+176.86$. It was also found that the bigger depressurization rate is, the better production is(methane gas is produced over 46.2% at depressurization rate 50% compared with 40%). However, on the contrary to this, it is presumed that gas production is decreased at 60% due to gas hydrate reformation.

Effect of Adding SiO2 and Al2O3 on Mechanical Properties of Zircon (SiO2와 Al2O3 첨가가 지르콘의 기계적 특성에 미치는 영향)

  • Cho, Bum-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.220-224
    • /
    • 2011
  • Zircon has excellent thermal, chemical, and mechanical properties, but it is hard to make a dense sintered product because of dissociation during the sintering process. This study analyzes how the addition of $SiO_2$ and $Al_2O_3$ affects the mechanical properties of sintered zircon, particularly in regards to reducing the thermal dissociation and improving the mechanical properties of $ZrSiO_4$. Zircon specimens containing different amounts of $SiO_2$ and $Al_2O_3$ were prepared and sintered to observe how the mechanical properties of $ZrSiO_4$ changed according to the differing amount of $SiO_2$ and $Al_2O_3$. The $ZrSiO_4$ that was used for the starting material was ground by ball mill to an average particle size of 3 ${\mu}m$. The $SiO_2$ and $Al_2O_3$ that was used for additives were ground to an average particle size of 3 ${\mu}m$ and 0.5 ${\mu}m$, respectively. Adding $SiO_2$ resulted in transformation in the liquid phase at high temperatures, which had little effect on suppressing the thermal dissociation but enhanced the mechanical properties of $ZrSiO_4$. When $Al_2O_3$ was added, the mechanical properties of $ZrSiO_4$ decreased due to the formation of pores and abnormal grains in the microstructure of the sintered zircon.

Regular Distribution of -OH Fragments on a Si (001)-c(4×2) Surface by Dissociation of Water Molecules (물 분자의 해리에 의한 Si (001)-c(4×2) 표면에서의 수산화기의 균일한 분포)

  • Lee, Soo-Kyung;Oh, Hyun-Chul;Kim, Dae-Hee;Jeong, Yong-Chan;Baek, Seung-Bin;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.457-462
    • /
    • 2010
  • Adsorption of a water molecule on a Si (001) surface and its dissociation were studied using density functional theory to study the distribution of -OH fragments on the Si surface. The Si (001) surface was composed of Si dimers, which buckle in a zigzag pattern below the order-disorder transition temperature to reduce the surface energy. When a water molecule approached the Si surface, the O atom of the water molecule favored the down-buckled Si atom, and the H atom of the water molecule favored the up-buckled Si atom. This is explained by the attractions between the negatively charged O of the water and the positively charged down-buckled Si atom and between the positively charged H of the water and the negatively charged up-buckled Si atom. Following the adsorption of the first water molecule on the surface, a second water molecule adsorbed on either the inter-dimer or intra-dimer site of the Si dimer. The dipole-dipole interaction of the two adsorbed water molecules led to the formation of the water dimer, and the dissociation of the water molecules occurred easily below the order-disorder transition temperature. Therefore, the 1/2 monolayer of -OH on the water-terminated Si (001) surface shows a regular distribution. The results shed light on the atomic layer deposition process of alternate gate dielectric materials, such as $HfO_2$.