• Title/Summary/Keyword: Displacement of fracture

Search Result 672, Processing Time 0.027 seconds

Prediction of Ground Condition Changes Ahead of Tunnel Face Using Three-Dimensional Absolute Displacement Analysis (터널 3차원 절대변위 해석기법을 이용한 막장전방지반 예측)

  • Bang, Joon-Ho;Han, Il-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.101-113
    • /
    • 2006
  • Arching effect occurs around the unsupported excavation surface near to tunnel face when a tunnel is excavated in a stable rock mass. If a weak fracture zone exists in front of tunnel face, a displacement occurs between tunnel face and weak fracture zone due to stress concentration. If three-dimensional absolute coordinates (longitudinal, transverse, vertical direction) is measured at tunnel face by geodetic method, the ground change in front of the tunnel face can be predicted by analysing three-dimensional absolute displacement. The purpose of this study is to verify the analysis method of three-dimensional absolute displacement by comparing the trend of displacement ratio at crown and sidewall of tunnel and the influence line/trend line of crown settlement compared with TSP results in the same section.

  • PDF

J-Integral Evaluation of Concrete Fracture Characteristics

  • Choi, Sin-Ho;Kye, Hae-Ju;Kim, Wha-Jung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.183-189
    • /
    • 2006
  • Many researchers have recently proposed various parameters, variables of models and experimental methods to evaluate fracture properties of concrete, and their developments allow us to analyze the non-linear and quasi-brittle fracture mechanisms. This paper presents a brief treatment of the fracture parameters. Additionally, three-point bending tests were conducted to compare J-integral($J_{Ic}$) with other parameters($K_{Ic},\;G_{Ic},\;and\;G_F$). The change in parameter values with respect to the width and notch length of concrete beam specimens was also considered. The load-displacement curves were used to measure the concrete fracture toughness experimentally. From the results of experiment, it was found that the value of $G_F\;and\;J_{Ic}$ decreased as the notch depth increased and that $G_F$ was less sensitive than $J_{Ic}$. Therefore, the former, $G_F$, is more appropriate in using it as the concrete fracture toughness parameter. The values of $G_F\;and\;J_{Ic}$ increased when the width of concrete specimens increasing from 75 mm to 150 mm. Thus, the effects of the specimen width should be considered in determining the fracture toughness of concrete.

Surgical Methods of Zygomaticomaxillary Complex Fracture

  • Ji, So Young;Kim, Seung Soo;Kim, Moo Hyun;Yang, Wan Suk
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.4
    • /
    • pp.206-210
    • /
    • 2016
  • Background: Zygoma is a major buttress of the midfacial skeleton, which is frequently injured because of its prominent location. Zygoma fractures are classified according to Knight and North based on the direction of anatomic displacement and the pattern created by the fracture. In zygomaticomaxillary complex (ZMC) fracture many incisions (lateral eyebrow, lateral upper blepharoplasty, transconjunctival, subciliary, subtarsal, intraoral, direct percutaneous approach) are useful. We reviewed various approaches for the treatment of ZMC fractures and discussed about incisions and fixation methods. Methods: A retrospective review was conducted of patients with ZMC fracture at a single institution from January 2005 to December 2014. Patients with single zygomatic arch fracture were excluded. Results: The identified 694 patients who were admitted for zygomatic fractures from which 192 patients with simple arch fractures were excluded. The remaining 502 patients consisted of 439 males and 63 females, and total 532 zygomatic bone was operated. Orbital fracture was the most common associated fracture. According to the Knight and North classification the most frequent fracture was Group IV. Most fractures were fixated at two points (73%). Conclusion: We reviewed our cases over 10 years according to fracture type and fixation methods. In conclusion, minimal incision, familiar approach and fixation methods of the surgeon are recommended.

Effect of Loading Rate on the Fracture Behavior of Nuclear Piping Materials Under Cyclic Loading Conditions

  • Kim, Jin Weon;Choi, Myung Rak;Kim, Yun Jae
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1376-1386
    • /
    • 2016
  • This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to understand clearly the fracture behavior of piping materials under seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature and the operating temperature of nuclear power plants (i.e., $316^{\circ}C$). SA508 Gr.1a low-alloy steel and SA312 TP316 stainless steel piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 stainless steel was independent of the loading rate at both room temperature and $316^{\circ}C$. For SA508 Gr.1a lowalloy steel, the loading rate effect on the fracture behavior was appreciable at $316^{\circ}C$ under cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio of the load (R) was -1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = -1 at a quasistatic loading rate.

After-fracture behaviour of steel-concrete composite twin I-girder bridges: An experimental study

  • Lin, Weiwei
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.139-149
    • /
    • 2022
  • To simplify the design and reduce the construction cost of traditional multi-girder structural systems, twin I-girder structures are widely used in many countries in recent years. Due to the concern on post-fracture redundancy, however, twin girder bridges are currently classified as fracture critical structures in AASHTO specifications for highway bridges. To investigate the after-fracture behavior of such structures, a composite steel and concrete twin girder specimen was built and an artificial fracture through the web and the bottom flange was created on one main girder. The static loading test was performed to investigate its mechanical performance after a severe fracture occurred on the main girder. Applied load and vertical displacement curves, and the applied load versus strain relationships at key sections were measured. To investigate the load distribution and transfer capacities between two steel girders, the normal strain development on crossbeams was also measured during the loading test. In addition, both shear and normal strains of studs were also measured in the loading test to explore the behavior of shear connectors in such bridges. The functions and structural performance of structural members and possible load transfer paths after main girder fractures in such bridges were also discussed. The test results indicate in this study that a typical twin I-girder can resist a general fracture on one of its two main girders. The presented results can provide references for post-fracture performance and optimization for the design of twin I-girder bridges and similar structures.

A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects

  • Hariri-Ardebili, Mohammad Amin;Seyed-Kolbadi, Seyed Mahdi;Mirzabozorg, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.17-39
    • /
    • 2013
  • In the present paper, a coaxial rotating smeared crack model is proposed for mass concrete in three-dimensional space. The model is capable of applying both the constant and variable shear transfer coefficients in the cracking process. The model considers an advanced yield function for concrete failure under both static and dynamic loadings and calculates cracking or crushing of concrete taking into account the fracture energy effects. The model was utilized on Koyna Dam using finite element technique. Dam-water and dam-foundation interactions were considered in dynamic analysis. The behavior of dam was studied for different shear transfer coefficients considering/neglecting fracture energy effects. The results were extracted at crest displacement and crack profile within the dam body. The results show the importance of both shear transfer coefficient and the fracture energy in seismic analysis of concrete dams under high hydrostatic pressure.

Three Dimensional Computed Tomography in the Assessment of Subtle Fracture in Dogs (컴퓨터단층촬영에서 3차원 재구성 영상을 통한 개의 골절 진단)

  • 이기창;권정국;송경진;최민철
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.523-526
    • /
    • 2003
  • Three dimensional computed tomographic images were obtained in two cases with trauma. The first case of a 3 year-old male Maltese, with ataxia and head tilting due to head trauma was referred to veterinary medical teaching hospital, Seoul National University. Remarkable findings were not found on survey radiographs. With the help of three-dimensional reconstruction computed tomographic imaging, parietal and occipital bone fracture was identified. The second case of 4 month-old female Yorkshire terrier with left forelimb lameness was referred right after trauma. Survey radiography showed obvious incongruity of the elbow joint. Lateral and medial condyle of the left humerus fracture and lateral displacement of the left ulna were apparent in three-dimensional computed tomographic image. It was considered that three-dimensional computed tomography could be used as an aid modality for the exact evaluation of extends and degree of fracture as well as planning of orthopedic surgery.

Atypical viscous fracture of human femurs

  • Yosibash, Zohar;Mayo, Romina Plitman;Milgrom, Charles
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • Creep phenomenon at the scale of bone tissue (small specimens) is known to be present and demonstrated for low strains. Here creep is demonstrated on a pair of fresh-frozen human femurs at the organ level at high strains. Under a constant displacement applied on femur's head, surface strains at the upper neck location increase with time until fracture, that occurs within 7-13 seconds. The monotonic increase in strains provides evidence on damage accumulation in the interior (probably damage to the trabeculae) prior to final fracture, a fact that hints on probable damage of the trabecular bone that occurs prior to the catastrophic fracture of the cortical surface layer.

Cohesive modeling of dynamic fracture in reinforced concrete

  • Yu, Rena C.;Zhang, Xiaoxin;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.389-400
    • /
    • 2008
  • In this work we simulate explicitly the dynamic fracture propagation in reinforced concrete beams. In particular, adopting cohesive theories of fracture with the direct simulation of fracture and fragmentation, we represent the concrete matrix, the steel re-bars and the interface between the two materials explicitly. Therefore the crack nucleation within the concrete matrix, through and along the re-bars, the deterioration of the concrete-steel interface are modeled explicitly. The numerical simulations are validated against experiments of three-point-bend beams loaded dynamically under various strain rates. By extracting the crack-tip positions and the crack mouth opening displacement history, a two-stage crack propagation, marked by the attainment of the peak load, is observed. The first stage corresponds to the stable crack advance, the second one, the unstable collapse of the beam.

Effect of Test Parameter on Ball Shear Properties for BGA and Flip Chip Packages (BGA 및 Flip Chip 패키지의 볼전단 특성에 미치는 시험변수의 영향)

  • Gu, Ja-Myeong;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.19-21
    • /
    • 2005
  • The ball shea. tests for ball grid array (BGA) and flip chip packages were carried out with different displacement rates to find out the optimum condition of the displacement rate for this test. The BGA packages consisted of two different kinds of solder balls (eutectic Sn-37wt.%Pb and Sn-3.5wt.%Ag) and electroplated Au/Ni/Cu substrate, whereas the flip chip package consisted of electroplated Sn-37Pb solder and Cu UBM. The packages were reflowed up to 10 times, or aged at 443 K up to 21 days. The variation of the displacement rate resulted in the variations of the shear properties such as shear force, displacement rate at break, fracture mode and strain rate sensitivity. The increase in the displacement rate led to the increase of the shear force and brittleness of solder joints.

  • PDF