• Title/Summary/Keyword: Displacement measuring Interferometer

Search Result 32, Processing Time 0.029 seconds

Design and Analysis of a Receiver-Transmitter Optical System for a Displacement-Measuring Laser Interferometer (위치변위 레이저 간섭계용 송수신 광학계의 설계 및 분석)

  • Yun, Seok-Jae;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • We present a new type of receiver-transmitter optical system that can be adapted to the sensor head of a displacement-measuring interferometer. The interferometer is utilized to control positioning error and repetition accuracy of a wafer, down to the order of 1 nm, in a semiconductor manufacturing process. Currently, according to the tendency of scale-up of wafers, an interferometer is demanded to measure a wider range of displacement. To solve this technical problem, we suggest a new type of receiver-transmitter optical system consisting of a GRIN lens-Collimating lens-Afocal lens system, compared to conventional receiver-transmitter using a single collimating lens. By adapting this new technological optical structure, we can improve coupling efficiency up to about 100 times that of a single conventional collimating lens.

Analysis and compensation of positioning error for aerostatic stage (공기정합 스테이지의 위치결정오차 분석 및 보정)

  • 황주호;박천홍;이찬흥;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.378-391
    • /
    • 2002
  • A 250mm stroke aerostatic stage, which detects position with laser scale and is driven by linear motor, is made and analyzed positioning error in 20$\pm$ 0.5 $^{\circ}C$ controlled atmosphere, aiming at investigating positioning characteristic of ultra-precision stage. We prove this aerostatic stage has a 10nm micro step resolution by experiment. By means of analyzing laser interferometer system, the scale of measuring error is about 0.2-0.4$\mu\textrm{m}$ according to refractive index error from missing the temperature change. To improve laser interferometer system, compensate refractive index error using measuring data from thermocouple. And, confirm 0.10$\mu\textrm{m}$ repeatability and 0.13 $\mu\textrm{m}$ positioning accuracy using the compensating refractive index. Also, we confirm 0.07 ${\mu}{\textrm}{m}$ repeatability of the stage using capacitive displacement sensor.

  • PDF

Design and Analysis of Displacement/Length Measuring System Using Laser Interferometry (광간섭법을 이용한 변위/길이 측정시스템의 설계 및 해석)

  • Kim, J.S.;Kim, S.C.;Chung, S.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.151-156
    • /
    • 1997
  • A laser measurement system, a modified Michelson interferometer, which can accurately measure high speed length and displacement of servomechanisms by detecting a phase shift in the measurement beam using an optical interference was developed. A frequency stabilized laser source and a 20 fold frequency interpolation and digitizing circuit were applied to the system. The refra- ctive index of the ambient air was calibrated through the Edlens formula. The system achieved a resolution of /40, 16nm, a maximum allow-able measurement speed of 600nm/sec, and a length measure- ment range of 1500 mm. Performance of the system was evaluated on the machining center in short and long length measurements.

  • PDF

Measurement of the Axial Displacement Error of a Segmented Mirror Using a Fizeau Interferometer (피조 간섭계를 이용한 단일 조각거울 광축방향 변위 오차 측정)

  • Ha-Lim, Jang;Jae-Hyuck, Choi;Jae-Bong, Song;Hagyong, Kihm
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • The use of segmented mirrors is one of the ways to make the primary mirror of a spaceborne satellite larger, where several small mirrors are combined into a large monolithic mirror. To align multiple segmented mirrors as one large mirror, there must be no discontinuity in the x, y-axis (tilt) and axial alignment error (piston) between adjacent mirrors. When the tilt and piston are removed, we can collect the light in one direction and get an expected clear image. Therefore, we need a precise wavefront sensor that can measure the alignment error of the segmented mirrors in nm scale. The tilt error can be easily detected by the point spread image of the segmented mirrors, while the piston error is hard to detect because of the absence of apparent features, but makes a downgraded image. In this paper we used an optical testing interferometer such as a Fizeau interferometer, which has various advantages when aligning the segmented mirror on the ground, and focused on measuring the axial displacement error of a segmented mirror as the basic research of measuring the piston errors between adjacent mirrors. First, we calculated the relationship between the axial displacement error of the segmented mirror and the surface defocus error of the interferometer and verified the calculated formula through experiments. Using the experimental results, we analyzed the measurement uncertainty and obtained the limitation of the Fizeau interferometer in detecting axial displacement errors.

Heterodyne Optical Interferometer using Dual Mode Phase Measurement

  • Yim, Noh-Bin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.81-88
    • /
    • 2001
  • We present a new digital phase measuring method for heterodyne optical interferometry, which providers high measuring speed up to 6 m/s with a fine displacement resolution of 0.1 nanometer. The key idea is combining two distinctive digital phase measuring techniques with mutually complementary characteristics to earth other one is counting the Doppler shift frequency counting with 20 MHz beat frequency for high-velocity measurement and the other is the synchronous phase demodulation with 2.0 kHz beat frequency for extremely fine displacement resolution. The two techniques are operated in switching mode in accordance wish the object speed in a synchronized way. Experimental results prove that the proposed dual mode phase measuring scheme is realized with a set of relatively simple electronic circuits of beat frequency shifting, heterodyne phase detection. and low-pass filtering.

  • PDF

Precise Position Control of a Linear Stage with I/Q heterodyne Interferometer Feedback

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, J.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1142-1146
    • /
    • 2004
  • The ultra precision linear stage is an essential device in the fields of MEMS and Bio technology. A piezo electric motor is widely used for its better linear characteristics, faster response time, and smaller size than conventional electro-magnetic actuator. We develop a new inchworm type motor to implement an actuator-integrated a long stroke linear stage which can move fast. To implement a servo system, we use a heterodyne interferometer as a position sensor, and we propose a new measurement technique using I/Q demodulator, and we propose a counting method to measure the position of fast moving object with low cost circuitry. The characteristics of the actuator and servo system are evaluated by measuring its displacement with a commercial laser interferometer.

  • PDF

The Small Angle Generator Based on a Laser Angle Interferometer

  • Eom, Tae-Bong;Jeong, Don-Young;Kim, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.20-23
    • /
    • 2007
  • To calibrate precision autocollimators, the Korean Research Institute of Standards and Science (KRISS) has built a small angle generator using a laser interferometer. The system is based on a sine bar mechanism in which the angle is determined from the ratio of two lengths. The rotational angle is measured by the angle interferometer and the heterodyne laser interferometer detects the relative displacement of two retro-reflectors attached to the rotating arm. The distance between the two retro-reflectors of the laser angle interferometer is self-calibrated by an index table positioned on the rotating arm. The resolution of the system is 0.002 seconds, and the accuracy is better than 0.04 seconds within a measuring range of $\pm$1 degree. The small angle generator can also be used with an index table that can divide one circle into 1440 angles. The combined system can generate any angle over 360 degrees to an accuracy of 0.11 seconds.

Applicability estimation of ESPI on the vibration mode analysis of rectangular plate (직사각형 평판의 진동모드 해석에 관한 ESPI의 적용성 평가)

  • 김경석;정현철;박경주;양승필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.61-67
    • /
    • 1997
  • The electronic speckle pattern interferometer (ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. In this study, we used an ESPI system based on the dual beam speckle interferometer method in order to measure in-plane displacement and vibration mode using the ESIP technique. This research was carried out for the purpose of applying the vibration analysis method employing Electro-Optic holographic interference technique to the vibration analysis of uniform rectangular cantilevers plate(SS400,STS304) with cantilevers span to breadth ratio of 150 by 75. And thickness of 1mm and 0.8mm respectively. We improved the ESPI technique in order to obtain the distribution of displacement component resolved in one direction through a CCD camera combined with an image processing system. To certify and to assess the accuracy in measuring by this ESPI, the results obtained with the speckle method and vibration mode analysis are to be compared with those results by Warbuton's Theoretical expression and vibration made in FEM analysis.

  • PDF

Micro Displacement Sensor Using an Astigmatic Method (비점수차법을 이용한 변위센서 개발)

  • Lee C.W.;Song J.Y.;Ha T.H.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.257-258
    • /
    • 2006
  • This paper presents the displacement sensor based on astigmatic method that has a small measurement range. The sensor has the characteristic that the measuring range is changed easily by exchanging a objective lens or distance between a objective lens and a collimator lens. The measuring range and resolution is evaluated by a laser interferometer.

  • PDF

A Study on the Quantitative Measurement of In-plane Displacement of Carbon Steel for Machine Structures according to Rolling Direction using a dual-beam Shear Interferometer (듀얼 빔 전단간섭계를 이용한 압연방향에 따른 기계구조용 탄소강의 면내 변위 정량적 측정에 대한 연구)

  • Kang, Chan-Geun;Kim, Sang Chae;Kim, Han-Sub;Lee, Hang-Seo;Jung, Hyun-il;Jung, Hyun-Chul;Song, Jae-Geun;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an in-plane deformation measuring system using a dual-beam shear interferometer was constructed to measure the in-plane deformation of the measuring object. The in-plane deformation of the object was quantitatively measured according to the load and surface treatment conditions of the object. We also verified the reliability of the proposed technique by simultaneously performing the technique with an electronic speckle pattern interferometry system (ESPI), which is another laser application measurement technology. Digital shearography directly measures the deformation gradient or strain components and has the advantages of being full-field, noncontact, highly sensitive, and robust. It offers a much higher measurement sensitivity compared with noncoherent measurement methods and is more robust and applicable to in-field tests.