• Title/Summary/Keyword: Displacement distortion

Search Result 123, Processing Time 0.028 seconds

Car transmission shaft distortion correction system based on adaptive PID controller using displacement sensors (변위센서를 이용한 적응적 PID제어기반 자동차 변속기 샤프트 교정시스템)

  • Choi, Sang-Bok;Ban, Sang-Woo;Kim, Ki-Taeg
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.375-384
    • /
    • 2010
  • In this paper, we proposed a new shaft distortion correction system having an adaptive PID controller using displacement sensors, which is adaptively reflecting variations of shaft strength owing to irregular heat treatment during an annealing process and sensitivity to the seasonal temperature changes. Generally, the shafts are annealed by heat treatment in order to enlarge the strength of the shaft, which causes an distortion of a shaft such as irregular bending of the shaft. In order to correct such a distortion of the shaft, a mechanical pressure is properly impacted to the distorted shaft. However, the strength of every shaft is different from each other owing to irregular annealing and seasonal temperature changes. Especially, the strength of a thin shaft such as a car transmission shaft is much more sensitive than that of a thick shaft. Therefore, it is very important for considering the strength of each shaft during correction of the car transmission shaft distortion in order to generate proper mechanical pressure. The conventional PID controller for the shaft distortion correction system does not consider each different strength of each shaft, which causes low productivity. Therefore, we proposed a new PID controller considering variations of shaft strength caused by seasonal temperature changes as well as irregular heat treatment and different cooling time. Three displacement sensors are used to measure a degree of distortion of the shaft at three different location. The proposed PID controller generates adaptively different coefficients according to different strength of each shaft using appropriately obtained pressure times from long-term experiments. Consequently, the proposed shaft distortion correction system increases the productivity about 30 % more than the conventional correction system in the real factory.

Noise Criteria for the Calculation of Response Spectra (응답스펙트럼 계산을 위한 잡음기준)

  • 노명현;최강룡;윤철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.238-246
    • /
    • 2003
  • By using simulated ground motions, which is sum of earthquake signals and noise, we measured the distortion of response spectra due to noise. We found that the distortion is more closely related to the signal-to-noise (S/N) ratio of root-mean-square (RMS) measurement than that of conventional peak measurement. Given a S/M ratio, the distortion of absolute acceleration response spectra is independent on the earthquake magnitude, while that of relative displacement response spectra has a strong dependence on the earthquake magnitude. This means that, when we calculate response spectra from time histories, we can efficiently predict the distortion of acceleration response spectra simply by measuring the RMS SJN ratios, or the distortion of displacement response spectra by combining the RMS S/N ratios and the earthquake magnitudes.

  • PDF

Controller design for compensation of nonlinear harmonic distortion in direct-radiator loudspeakers (직접 방사형 스피커의 비선형 고조파 왜곡 보상 제어기의 설계)

  • 김윤선;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.399-402
    • /
    • 1996
  • The electrodynamic loudspeakers should have a wide dynamic range to reproduce various sound levels. When the input signal is small, the radiated sound from the loudspeaker is not so much distorted. However, for large input signal with low frequency component the radiated sound is significantly distorted due to the nonlinearities of the loudspeaker. The suspension, damping, and magnetic flux of loudspeaker are the main sources of the nonlinearity. Such electromechanical parameters related to harmonic distortion have been represented by a polynomial model for diaphragm displacement, while each of the polynomial coefficient is evaluated by using the principle of harmonic balance experimentally. Based on the polynomial model, we designed a compensator for nonlinear harmonic distortion of direct radiator loudspeaker. Than observer is used to estimate the displacement of the loudspeaker diaphragm, which is rather difficult to measure directly in the conventional setting. The usefulness of the designed compensator is demonstrated by numerical simulations. Simulation results show about 30db decrease at the second and third higher harmonic distortions. We carry out an experiment on speaker to verify designed controller and nonlinear observer.

  • PDF

Development of camera modeling and calibration technique with geometric distortion (기하학적 왜곡을 고려한 카메라 모델링 및 보정기법 개발)

  • 한성현;이만형;장영희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1836-1839
    • /
    • 1997
  • This paper presents machine vision technique with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing.

  • PDF

A Study on Machine Vision System and Camera Modeling with Geometric Distortion

  • 왕한흥;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.179-185
    • /
    • 1997
  • This paper presents machine vision technique with a camera modeling that accounts for major sources of camera distortion, namely,radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to varios degrees of decentering,that is,the optical centers of lens elements are not strictly collinear. Thin prism distortion arises form imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of and to apply the line of part manufacturing.

An improved parametric formulation for the variationally correct distortion immune three-noded bar element

  • Mukherjee, Somenath;Manju, S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.261-281
    • /
    • 2011
  • A new method of formulation of a class of elements that are immune to mesh distortion effects is proposed here. The simple three-noded bar element with an offset of the internal node from the element center is employed here to demonstrate the method and the principles on which it is founded upon. Using the function space approach, the modified formulation is shown here to be superior to the conventional isoparametric version of the element since it satisfies the completeness requirement as the metric formulation, and yet it is in agreement with the best-fit paradigm in both the metric and the parametric domains. Furthermore, the element error is limited to only those that are permissible by the classical projection theorem of strains and stresses. Unlike its conventional counterpart, the modified element is thus not prone to any errors from mesh distortion. The element formulation is symmetric and thus satisfies the requirement of the conservative nature of problems associated with all self-adjoint differential operators. The present paper indicates that a proper mapping set for distortion immune elements constitutes geometric and displacement interpolations through parametric and metric shape functions respectively, with the metric components in the displacement/strain replaced by the equivalent geometric interpolation in parametric co-ordinates.

Analysis of Effect on Camera Distortion for Measuring Velocity Using Surface Image Velocimeter (표면영상유속측정법을 이용한 유속 측정 시 카메라 왜곡 영향 분석)

  • Lee, Jun Hyeong;Yoon, Byung Man;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • A surface image velocimeter (SIV) measures the velocity of a particle group by calculating the intensity distribution of the particle group in two consecutive images of the water surface using a cross-correlation method. Therefore, to increase the accuracy of the flow velocity calculated by a SIV, it is important to accurately calculate the displacement of the particle group in the images. In other words, the change in the physical distance of the particle group in the two images to be analyzed must be accurately calculated. In the image of an actual river taken using a camera, camera lens distortion inevitably occurs, which affects the displacement calculation in the image. In this study, we analyzed the effect of camera lens distortion on the displacement calculation using a dense and uniformly spaced grid board. The results showed that the camera lens distortion gradually increased in the radial direction from the center of the image. The displacement calculation error reached 8.10% at the outer edge of the image and was within 5% at the center of the image. In the future, camera lens distortion correction can be applied to improve the accuracy of river surface flow rate measurements.

Analysis of Laser Weldment Distortion in the EDFA LD Pump Packaging (광신호 증폭기 EDFA LD 펌프 패키징 레이저 용접부 변형 해석)

  • Gang, Dae-Hyeon;Son, Gwang-Jae;Yang, Yeong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.139-146
    • /
    • 2001
  • This paper presents a study on heat transfer and residual distortion analysis of laser welded EDFA(Erbium Doped Fiber Amplifier) LD(Laser Diode) Pump using the finite element method. In the production process of LD Pump in light-wave communication system, ferrule and saddle are welded by Nd-YAG laser. These parts experience thermal and mechanical effect during heating and cooling cycle with the laser welding. Thus distortion happens in the laser-welded packaging, and it makes an error in detecting the light signal translate through optical fiber in LD Pump. The amount of final displacement produced by the laser welding is predicted using the finite element method. And the optimal shape of saddle is proposed with the results of numerical analyses to minimize the displacement.

  • PDF

Error Analysis of the Image Measurement System (영상 측정 시스템의 오차 분석)

  • 김준희;유은이;사승윤;김광래;유봉환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.490-495
    • /
    • 1996
  • Though the increment of using computer vision system in modern industry, there are lots of difficulties to measure precisely because of measurement error distortion phenomenon. Among these reasons, the distortion of edge is dominant reason which is occurred by the blurred image. The blurred image is happened when camera can not discriminate its precise focus. To calibrate and generalize distortion phenomenon is important. Thus, we must fix the discrimination criteria which is collected by image recognition of precise focus. Also, radial distortion causes an inward or outward displacement of a given image point from its ideal location. This type of distortion is mainly caused by flawed radial curvature curve of the elements. Thus, we were analyzed the distortion in terms of the changed with lens magnification.

  • PDF

Limitation of Measurement System in Application of Angular Distortion Criterion to Structure Near Road Embankment (도로 성토 시 인근 구조물에 각변위기준 적용에 있어 계측시스템의 한계성)

  • Kim, Taehyung;Kim, Dongin;Kim, Yuntae;You, Sangho;Jung, Youngeun;Kim, Sungwoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • Angular distortion due to differential settlement is one of the critical factors which influences on the stability and serviceability of a structure. The angular distortion criterion proposed by Bjerrum is generally used in practice. However, the measurement system used in field especially a road embankment site did not properly represent the angular distortion of a structure. The problem was related to the shortage and not proper installation of measurement gauges, and the incorrect understanding of the basic concept of angular distortion in interpretation of measurement data. These things were reveled by analyzing the measured data in the road embankment site. An improved measurement system has been suggested as a so-called "relative displacement measurement system" between columns with automatic measurement.