• Title/Summary/Keyword: Dispersion fields

Search Result 183, Processing Time 0.024 seconds

SMBH Mass Estimate Discrepancy and Its Origin of NGC 6861

  • Jang, Minsung;Owers, Matt
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.69.2-69.2
    • /
    • 2012
  • NGC 6861 is the brightest S0 galaxy in the Telescopium group. It has unusually high central stellar velocity dispersion (~400 km/s) and clear rotation (~250 km/s). Considering the well-known M-sigma relation, this large central dispersion implies that the central supermassive black hole (SMBH) has mass comparable to the most massive black holes in the Universe. However, the mass implied by the bulge luminosity-SMBH mass relation is an order of magnitude lower than that predicted by the M-sigma relation. In order to determine the origin of this inconsistency, we obtain integral field spectroscopy using the Wide Field Spectrograph (WiFeS) on the ANU 2.3m telescope. The data are used to map the velocity and velocity dispersion fields which show that our measurements are consistent with those from the other literature. The large field of view the WiFeS observations have allows us to map the kinematics of a much greater portion of NGC 6861 and reveals that the eastern part of the galaxy has higher velocity and dispersion than the rest of halo. We discuss the origin of the unusual fast rotation and the discrepancy of two SMBH mass estimations from three plausible perspectives: 1) the interaction between subgroups of NGC 6861 and its counterpart, NGC 6868; 2) the inhibited growth of the stellar bulge by the AGN activity which leads to an underestimate the SMBH mass when using the bulge luminosity-SMBH mass relation; and 3) gas rich minor mergers that could be crucial for increasing both rotation velocity and velocity dispersion during the evolution of NGC 6861.

  • PDF

A Simulation on the Two-Phase Flow Characteristics in Gas Bubble Driven Circulation Systems (Gas Bubble Driven Circulation Systems에서의 이상유동 특성의 시뮬레이션)

  • 최청렬
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.17-32
    • /
    • 1998
  • The flow fields in Gas Bubble Driven Circulation Systems were numerically analyzed. In various gas flow rate and bubble size, the flow characteristics were predicted. Eulerian-Eulerian approach was used for the formulation of both the continuous and dispersed phases. The modification of the general purpose computer program PHOENICS code was employed to predict the mean flow fields, turbulent characteristics, gas dispersion, volume fraction. The predicted shows very satisfactory agreement with experimental results for all regions of ladle. The results are of interest in the design and operation of wide variety of material processing.

  • PDF

Recent Advances in Scanning Acoustic Microscopy for Adhesion Evaluation of Thin Films

  • Ju, Hyeong-Sick;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.534-549
    • /
    • 2009
  • As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.

AC Insulation Breakdown Properties of the EMNC to Application of Distribution Molded Transformer (배전용 몰드변압기 적용을 위한 EMNC의 교류절연파괴특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.649-656
    • /
    • 2013
  • A conventional epoxy-microsilica composite (EMC) and an epoxy-microsilica-nanosilicate composite (EMNC) were prepared in order to apply them to mold-type transformers, current transformers (CT) and potential transformers (PT). Nanosilicate was exfoliated in a epoxy resin using our electric field dispersion process and AC insulation breakdown strength at $30{\sim}150^{\circ}C$, glass transition temperature and viscoelasticity were studied. AC insulation breakdown strength of EMNC was higher than that of EMC and that value of EMNC was far higher at high temperature. Glass transition temperature and viscoelasticity property of EMNC was higher than those of EMC at high temperature. These results was due to the even dispersion of nanosilicates among the nanosilicas, which could be observed using transmission electron microscopy (TEM). That is, the nanosilicates interrupt the electron transfer and restrict the mobility of the epoxy chains.

A Study on the Methyl Salicylate Dispersion in the Vicinity of Obstacles by Wind Tunnel Test (아음속 풍동을 이용한 구조물 형상 변화에 따른 살리실산메틸 확산 유동 연구)

  • Hong, Chang-Ki;Uhm, Han-Sup;Choi, Seung-Ki;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.69-73
    • /
    • 2014
  • To predict flow fields and chemical agent dispersion in urban area, wind tunnel experiments was performed. The agent was adopted MS (methyl salicylate) because the real chemical agent is unsafe. The exact concentration of methyl salicylate was generated by the commercial gas generator (STI-2500) and three different obstacle shapes were applied (i.e., rectangular, cylinder and pyramid). The concentration was measured with the qualified ion mobility sensor and gas chromatography. The data necessary for virtual test method of the real chemical agent were obtained.

Computational Flow Analysis of a Large Scale Mixer for Nanopowder Dispersion in Coating Liquid (나노분말이 분산된 기능성 코팅액 제조를 위한 대용량 교반기의 유동해석)

  • Kim, Dongjoo;Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In many technical fields including electronics and display manufacturing processes, properties of coating liquids could be greatly enhanced by adding nanopowders and it requires efficient mixing techniques to achieve uniform dispersion of nanoparticles in liquids. This paper presents the three-dimensional CFD simulations on the flowfields of a highly viscous liquid in the large scale industrial mixer of impeller type. The effects of several important design and operation parameters such as impeller geometry, rotational speed, and degree of liquid viscosity are investigated to appreciate the mixing performance by examining the computational results for flow pattern of rotationally stirred liquid of high viscosity in the mixer.

Thermal, Mechanical, and Electrical Properties for EMNC_60 and EMNC_65 (EMNC_60과 EMNC_65에 대한 열적, 기계적, 전기적 특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.895-901
    • /
    • 2012
  • In order to application for high voltage heavy electric equipments, epoxy/microsilica 60 wt%/nano layered silicate composites (EMNC_60) and epoxy/microsilica 65 wt%/nano layered silicate composites (EMNC_65) respectively was synthesized by our electric field dispersion method and the result was obtained completely dispersion state. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanical properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. The study on thermal property, EMNC_65 was better than EMNC_60 and mechanical, electrical properties much improved EMNC_60 compared with EMNC_65.

A Pathway to Microdomain Alignment in Block Copolymer/Nanoparticle Thin Films under Electric Field

  • Bae, Joonwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2689-2693
    • /
    • 2014
  • The control over microstructure in block copolymer thin films using external electric fields has become an interesting research topic. In this article, the effect of nanoparticle on the microdomain alignments in block copolymer (polystyrene-b-poly(2-vinylpyridine)/nanoparticle (Au) thin films under electric fields has been examined with transmission electron microscopy. The homogeneous dispersion of Au nanoparticles into the block copolymer matrix was achieved by surface modification of nanoparticles with compatible ligands. Compared with the phenomenon seen in the pristine block copolymer thin films, a peculiar alignment behavior was observed in the block copolymer/nanoparticle hybrid thin films under electric fields. In addition, the different pathways observed in the pristine and nanoparticle incorporated block copolymer thin films were also monitored as a function of exposure time. This work can provide the fundamental information for understanding microdomain alignment in block copolymer/nanoparticle thin films under external electric fields.

Numerical Simulation of $NO_2$Concentration considering SST Effects (SST 효과를 고려한 계절별 $NO_2$농도 수치모의)

  • 원경미;이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.187-194
    • /
    • 2001
  • For the purpose of predicting air pollutants concentration in Pusan coastal urban, we used an Eulerian model of flow and dispersion/chemistry/deposition process considering SST effects which estimate through POM. The results of air quality model including emission from various sources show that the seasonal variation pattern of respective pollutants was affected by the seasonal SST fields and local circulation. Horizontal deviation of diurnal SST was 2.5~4K, especially large gradients in coastal region. Through numerical simulation of wind fields we predicted that local circulation prevailed during daytime in summer and nighttime in winter. So high concentration distribution showed toward inland in spring and summer seasons, while high concentration distribution showed at inland near coast in autumn and winter.

  • PDF

A Study on the baffle effect in a stirred mixer using simultaneous measurement of velocity/concentration fields (속도/농도 동시측정에 의한 회전교반기 내부 유동의 baffle 효과에 관한 연구)

  • Kim Yun Gi;Min Young Uk;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.35-38
    • /
    • 2003
  • Simultaneous measurement of velocity and concentration fields in a stirred mixer flow using a combined Stereo-PIV/Planar-LIF technique is carried out. Instantaneous velocity fields and concentration fields represent the local flow characteristics. A baffle is perpendicularly attached to the Wall to remove inactive region which shows very slow dispersion. It is found that the baffle produces tip vortex and breaking the divided streamline, so that mixing efficiency could be increases significantly.

  • PDF