• Title/Summary/Keyword: Dispersion coefficients

Search Result 159, Processing Time 0.025 seconds

Dispersion Model of Initial Consequence Analysis for Instantaneous Chemical Release (순간적인 화학물질 누출에 따른 초기 피해영향 범위 산정을 위한 분산모델 연구)

  • Son, Tai Eun;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • Most factories deal with toxic or flammable chemicals in their industrial processes. These hazardous substances pose a risk of leakage due to accidents, such as fire and explosion. In the event of chemical release, massive casualties and property damage can result; hence, quantitative risk prediction and assessment are necessary. Several methods are available for evaluating chemical dispersion in the atmosphere, and most analyses are considered neutral in dispersion models and under far-field wind condition. The foregoing assumption renders a model valid only after a considerable time has elapsed from the moment chemicals are released or dispersed from a source. Hence, an initial dispersion model is required to assess risk quantitatively and predict the extent of damage because the most dangerous locations are those near a leak source. In this study, the dispersion model for initial consequence analysis was developed with three-dimensional unsteady advective diffusion equation. In this expression, instantaneous leakage is assumed as a puff, and wind velocity is considered as a coordinate transform in the solution. To minimize the buoyant force, ethane is used as leaked fuel, and two different diffusion coefficients are introduced. The calculated concentration field with a molecular diffusion coefficient shows a moving circular iso-line in the horizontal plane. The maximum concentration decreases as time progresses and distance increases. In the case of using a coefficient for turbulent diffusion, the dispersion along the wind velocity direction is enhanced, and an elliptic iso-contour line is found. The result yielded by a widely used commercial program, ALOHA, was compared with the end point of the lower explosion limit. In the future, we plan to build a more accurate and general initial risk assessment model by considering the turbulence diffusion and buoyancy effect on dispersion.

Temperature Stabilization of Group Index in Silicon Slotted Photonic Crystal Waveguides

  • Aghababaeian, Hassan;Vadjed-Samiei, Mohammad-Hashem;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.398-402
    • /
    • 2011
  • In this paper, we have proposed a principle to design wideband, low dispersion and temperature stabilized slow light structure in slotted photonic crystal waveguide (SPCW). The infiltration of the silicon photonic crystal with polymer will enhance the slow light and increase the group index, whereas the different signs of thermo-optic coefficients of polymer and silicon make the proposed structure stable on temperature variation over $60^{\circ}C$ and improves the group index-bandwidth products of the designed structure. The SPCW structure is modified to maximize the slow light effect and minimize the dependence of the group index and hence the group velocity dispersion to temperature.

A Study on the Evaluation of the Short-term Atmospheric Dispersion Models with Terrain Adjustment (지형을 고려한 단기 대기확산모형의 평가에 관한 연구)

  • 최일경;전의찬;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.125-134
    • /
    • 1990
  • The purpose of this study is to assess the performance of Short-term atmospheric dispersion models --- ISCST, MPTER, VALLEY --- with terrain adjustment. The models are evaluated through correlation analysis, paired analysis and log-normal culmulative analysis between the measured and predicted concentrations in Samcheonpo area. The correlation coefficients between the measured and predicted concentrations turn out to be higher with terrain adjustment than those without terrain adjustment. In paired analysis, the mean differences and average absolute gross errors of concentrations do not change significantly with terrain adjustment. But the variances of the residuals become much smaller when the terrain is adjusted. Through the log-normal cumulative analysis, it is found that the terrain adjustment improve the prediction performance of MPTER and VALLEY, but do not affect significantly that of ISCST. Overall, it is concluded that the performance of short term atmospheric dispersion models improve when the terrain is considered in computation, especially in MPTER and VALLEY.

  • PDF

Optimal OPC Position and Fiber Dispersion Coefficients depending on WDM Channel Numbers (WDM 채널수에 따른 최적의 OPC 위치 및 광섬유 분산 계수)

  • Lee, Seong-Real;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 2007
  • In this paper, the optimal position offset of optical phase conjugator (OPC) and the optimal dispersion offsets of fiber sections, which are alternating with the method for the symmetry of optical power and chromatic dispersion with respect to OPC, are numerically investigated as afunction of the WDM channel numbers. The WDM channel numbers are assumed to be 8, 12, 16, 20 and 24. The bit-rate of each channel is assumed to be 40 Gbps for all cases. It is confirmed that the optimal position offset of OPC and optimal dispersion offset of fiber section are gradually increased as the WDM channel numbers are gradually increased. But, the optimal dispersion values of fiber sections per OPC position offset of 1 km are independent on WDM channel numbers, because the optimal position offset of OPC and optimal dispersion offset of fiber section are simultaneously increased as the WDM channel numbers are increased. It is also confirmed that the applying of these optimal parameter values is efficient to WDM system with many channels rather than WDM with small channels.

  • PDF

Analysis of Radiation Exposure from Nuclear Reactor Accident in Complex Terrain (산악지형에서의 원자력발전소 사고시의 피폭해석)

  • Moon Hee Han;Sung Ki Chae;Moon Hyun Chun
    • Nuclear Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.216-223
    • /
    • 1985
  • The Gaussian plume model is widely used to calculate the concentrations of gaseous radioactive effluents in the atmosphere. This model assumes that the terrain is flat, so that the dispersion coefficients which are the most important parameters in this model must be compensated in complex terrain such as in Korea. In this study the compensation of vertical dispersion coefficient in two dimensional x-z plane has been accomplished by comparing the Gaussian plume model with numerical model. The results show that the concentractions of radioactive effluents over complex terrain are more dilluted than those expected over flat terrain.

  • PDF

Analysis of Salinity Dispersion in Estuaries by an X-Z Numerical Model (X-Z 수치모형에 의한 하구의 연도확산 분석)

  • 강주환;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.185-196
    • /
    • 1991
  • A laterally-averaged X-Z numerical model with transformed coordinates is developed to analyze the salinity dispersion in estuaries. Gravitational term, salinity variations with respect to the water depth. and re-evaluation of , salinity boundary condition are examined. Especially. the improvements in stability and accuracy of the numerical algorithm are made by adopting the fractional step method for the dispersion term of the governing equation. The model being applied to the Keum River Esturary, physical and numerical properties of Manning's n and dispersion coefficients are analyzed. Salinity intrusion into the river, influence of upstream river inflows, and salinity distribution for spring/neap tide are also examined.

  • PDF

Distortion Compensation of WDM Signals with initial frequency chirp in the Modified Mid-Span Spectral Inversion Technique

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • In this paper, the optimal value of optical phase conjugator (OPC) position and the optimal values of dispersion coefficients of fiber sections for the best compensation of the distorted WDM signals with frequency chirp of -1 are induced to alternate with the symmetrical distributions of power and local dispersion with respect to OPC, which is difficult to form in real optical link due to fiber attenuation in mid-span spectral inversion (MSSI) technique. It is confirmed that the Q-factors of total channels of -18.5 dBm launching light power exceed 16.9 dB, which value corresponds to 10-12 BER, by applying the induced optimal parameter values into 16 channels ${\times}$ 40 Gbps WDM system, on the other hand the Q-factors of only 9 channels exceed that value in WDM system with the conventional MSSI technique. Thus, it is expected to expand the availability of OPC in WDM system through the using of the optimal parameter values that are induced by the proposed method in this paper, without the symmetrical distributions of power and local dispersion.

A STUDY ON SNU PHOTOMETER SYSTEM AND ATMOSPHERIC EXTINCTION

  • Yoon, Tae-Seog;Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.15 no.2
    • /
    • pp.59-70
    • /
    • 1982
  • We have observed 85 UBV standard stars(V<6) with SNU photoelectric photometer system and 24" Cassegrain reflector at Sobaeksan Observing Station during the period between January and May, 1980 in order to examine the photometer system and to determine atmospheric extinction coefficients. From five night observations, the following results were obtained: (1) The set of filters(V=2mm GG 495, B=2mm GG 385+1mm BG 12, U=2mm UG 2) is better than the other filter set used in our tests on the basis of linear instrumental calibrations for V and B filters. (2) The SNU detecting system is very stable within ${\sigma}=0.002$ in magnitude in a night but the variation in its stability from night to night is not negligible. (3) The extinction coefficients were derived from two different methods and we have found no systematic seasonal variation in the extinction coefficients although the mean dispersion is considerable.

  • PDF

Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.256-265
    • /
    • 2023
  • Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total error was smaller, with a faster convergence speed.