• Title/Summary/Keyword: Dispersion Target

Search Result 81, Processing Time 0.027 seconds

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

  • Ryu, Ho Jin;Kim, Chang Kyu;Sim, Moonsoo;Park, Jong Man;Lee, Jong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.979-986
    • /
    • 2013
  • Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 $g-U/cm^3$ were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional $UAl_x$ dispersion targets, while increasing the uranium density in the target plates.

$SnO_2$ Dispersion of Sintered Body in $In_2O_3-SnO_2$ Binary System ($In_2O_3-SnO_2$ 이성분계 소결특성에 있어서 $SnO_2$ 분산성)

  • Chun, Tae-Jin;Park, Wan-Soo;Cho, Muyung-Jin;Kim, Jong-Su;Kim, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.198-198
    • /
    • 2006
  • Tin doped $In_2O_3$ sputtering target is widely used to produce a various kinds of flat panel display because of high transmittance in visible region and high electrical conductivity. In2O3 and SnO2 powders were prepared by a homogeneous precipitation method using metal source, respectively, the calcining and sintering behavior of the indium-tin oxide(In2O3-SnO2) composite powders were studied. The tin oxide(SnO2) dispersion condition in ITO sputtering target was improved by increasing calcining temperature. And the tin oxide dispersion was also improved by reducing the tin oxide contents in the ITO target from 30 to 5wt%. SnO2 dispersion and densification of ITO target is very difficult to control due to sublimation of SnO2 at over 1150C.

  • PDF

Linguistic and social factors affecting the /ɨ/ and /ʌ/ dispersion in Kyungsang Korean

  • Choe, Wook Kyung;Lee, Dongmyung
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.69-76
    • /
    • 2017
  • The current study investigated the productions of /ɨ/ and /${\Lambda}$/ in Kyungsang Korean, which is known for undergoing a dispersion for the younger generation. Specifically, to identify the nature of /ɨ/ and /${\Lambda}$/ in Kyungsang Korean, this study examined the linguistic and social factors affecting directions and degrees of the /ɨ/-/${\Lambda}$/ dispersion. Sixteen young speakers of Kyungsang Korean repeated 112 (near) minimal pairs containing the two target vowels. The formant values of each production as well as the Euclidean distance between the two vowels were analyzed for four manipulated factors: gender (male vs. female), the existence of carrier phrases (words in isolation vs. words with a carrier phrase), the lexical status of stimulus words (real-word pairs vs. nonsense-word pairs), and the vowel position within a word (word-initial positions vs. word-final positions). The results indicated that the female speakers produced the two target vowels more distinctively than the male speakers, and so did when the words were produced in isolation. The results also revealed that the Euclidean distances were greater for the real-word pairs and in word-initial positions. Overall, the results suggested that the Kyungsang Korean speakers in their 20s could distinctively produce the two vowels /ɨ/ and /${\Lambda}$/, but this vowel dispersion is not a completed process, but an ongoing one.

A Study on the Kinetic Energy and Dispersion Behavior of High-velocity Impact-induced Debris Using SPH Technique (SPH 기법을 이용한 고속충돌 파편의 운동에너지와 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.457-467
    • /
    • 2016
  • In this study, we investigate the dispersion behavior of debris and debris cloud generated by high-velocity impacts using the smoothed particle hydrodynamics (SPH) technique. The projectile and target plate were made of aluminum, and we confirm the validity of the SPH technique by comparing the measured major and minor axis lengths of the debris cloud in the reference with the predicted values obtained through the SPH analysis. We perform high-velocity impact and fracture analysis based on the verified SPH technique within the velocity ranges of 1.5~4 km/s, and we evaluate the dispersion behavior of debris induced by the impact in terms of its kinetic energy. The maximum dispersion radius of the debris on the witness plates located behind the target plate was increased with increasing impact velocity. We derive an empirical equation that is capable of predicting the dispersion radius, and we found that 95% of the total kinetic energy of the debris was concentrated within 50% of the maximum dispersion radius.

Dispersion Characteristics of Nonspherical Fume Micro-Particles in Laser Line Machining in Terms of Particle Sphericity (입자 구형도에 따른 레이저 선가공의 비구형 흄 마이크로 입자 산포 특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • This computational investigation of micro-sized particle dispersion concerns the fume particle contamination over target surface in high-precision laser line machining process of semiconductor and display device materials. Employing the random sampling based on probabilistic fume particle generation distributions, the effects of sphericity for nonspherical fume particles are analyzed for the fume particle dispersion and contamination near the laser machining line. The drag coefficient correlation for nonspherical particles in a low Reynolds number regime is selected and utilized for particle trajectory simulations after drag model validation. When compared to the corresponding results by the assumption of spherical fume particles, the sphericity of nonspherical fume particles show much less dispersion and contamination characteristics and it also significantly affects the particle removal rate in a suction air flow patterns.

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact (고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1065-1075
    • /
    • 2017
  • In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions (경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.

Numerical Simulation of Tsunamis Considering the Characteristics of Propagation in the East Sea (동해 전파특성을 고려한 지진해일 모의)

  • Sohn, Dae-Hee;Choi, Moon-Kyu;Sohn, Il-Soo;Cho, Yon-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.172-176
    • /
    • 2007
  • In this study, the numerical model for simulation of tsunamis is constructed by using the dispersion-correction scheme, 2nd upwind scheme, dynamic linking method, and so forth. The composed numerical model is used to simulate a hitorical tsunami event. The target tsunami event is the 1983 Central East Sea Tsunami. And, the predicted run-up heights of the tsunami at Imwon port are very reasonable compared to available observed data.

  • PDF

Modeling Study on Dispersion and Scavenging of Traffic Pollutants at the Location Near a Busy Road

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.272-279
    • /
    • 2015
  • The information about the dispersion and scavenging of traffic-related pollutants at the locations near busy expressways is very helpful to highway planners for developing better plans to reduce exposures to air pollution for people living as well as children attending schools and child care centers near roadways. The objective of the current study was to give information in the dispersion and scavenging of vehicle-derived pollutants at the region near a busy urban expressway by a combination of two different model calculations. The modified Gaussian dispersion model and the Lagrange type below-cloud scavenging model were applied to evaluate $NO_x$ dispersion and DEP (Diesel exhaust particles) wet removal, respectively. The highest $NO_x$ was marked 53.17 ppb within 20-30 meters from the target urban expressway during the heaviest traffic hours (08:00AM-09:00AM) and it was 2.8 times higher than that of really measured at a nearby ambient measuring station. The calculated DEP concentration in size-resolved raindrops showed a continuous decreasing with increasing raindrop size. Especially, a noticeable decrease was found between 0.2 mm and 1.0 mm raindrop diameter.