• 제목/요약/키워드: Dislocation density

검색결과 225건 처리시간 0.02초

비정질 탄산칼슘을 애용한 편광소자용 Calcite 단결정의 성장 및 특성평가 (Growth and characteristics of calcite single crystals using polarized device with amorphous calcium carbonate)

  • 박춘원
    • 한국결정성장학회지
    • /
    • 제15권3호
    • /
    • pp.93-98
    • /
    • 2005
  • 물에 대한 용해도가 우수한 비정질 탄산칼슘을 이용하여 저온 영역에서 Calcite 단결정을 수열육성 하였다. 비정질 탄산칼슘 제조의 출발원료로는 $CaCl_2$, 및 $Na_2CO_3$를 이용하였으며, 반응온도와 반응시간이 중요한 인자로 작용하였다. 한편, 중량손실법에 의한 비정질 탄산칼슘의 용해도 측정결과 $NH_4NO_3$, 수용액이 Calcite 결정성장에 효과적임을 알 수 있었다. Calcite 결정의 육성에 있어 큰 성장속도를 나타내는 수열조건은 다음과 같다. 즉, 출발원료: 비정질 탄산칼슘, 수열용매: 0.01m $NH_4NO_3$, 반응온도: $180^{\circ}C$, 반응시간: 30일 이었다. 이와 같은 조건하에서 얻어진 Calcite 단결정은 전위밀도: $10^6{\sim}10^7cm^{-2}$, 투과율: $190{\sim}400nm$ 범위에서 약 80%, 복굴절율: $0.17{\sim}0.18$ 이었으며, HCOT 및 $OH^-$ 이온의 혼입에 의한 광학적 흡수가 발생하지 않음을 FT-IR분석 결과로부터 알 수 있었다.

액상에피택시 방법에 의한 InP기판상의 GaAs 이종접합 박막 성장 (Liquid Phase Epitaxial Growth of GaAs on InP Substrates)

  • 김동근;이형종;임기영;장성주;장성주;김종빈;이병택
    • 한국재료학회지
    • /
    • 제4권5호
    • /
    • pp.600-607
    • /
    • 1994
  • LPE방법을 이용하여 InP기판 상에 GaAs이종접합 박막을 최초로 성장하였으며 제반 성장조건들이 박막특성에 미치는 영향을 NDIC광학현미경, SEM, TEM 및 DCXRD 등을 이용하여 조사하였다. 적정 LPE성장온도는 $720^{\circ}C$(냉각속도 $0.5^{\circ}C$/min.)이었으며 성장된 GaAs 박막의 표면형상은 융액 균질화 처리 시 기판을 InP cover웨이퍼로 보호한 경우가 In/InP 융액으로 보호한 경우에 비해 현저히 개선되었다. 박막 성장 시 Ga성장융액 내에 0.005wt% 정도의 Se을 첨가함으로서 기판의 열융해(meltback)현상이 억제되었고 박막의 표면 거칠기도 현저히 개선되었다. 미세 격자가 식각된 InP기판 상에 성장된 GaAs 박막의 DCXRD측정결과 미세 격자 패턴이 없는 기판 위에 성장된 시료보다 결정성이 더욱 향상되었으며 이는 TEM 관찰결과 GaAs/InP계면에서 생성된 전위들 중 일부가 상호반응에 의하여 미세격자 영역 내에 국한되기 때문으로 판단되었다.

  • PDF

핫스탬핑용 30MnB5강의 템퍼링 조건에 따른 미세조직 및 기계적 물성 연구 (Effects of Tempering Condition on the Microstructure and Mechanical Properties of 30MnB5 Hot-Stamping steel)

  • 정준영;박상천;신가영;이창욱;김태정;최민수
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.787-795
    • /
    • 2018
  • The effects of tempering condition on the microstructure and mechanical properties of 30MnB5 hot stamping steel were investigated in this study. Before the tempering, hot-stamped 30MnB5 steel was composed of only ${\alpha}^{\prime}$-martensite microstructure without precipitates. After the tempering at $180^{\circ}C$ for 120 min, nano-sized ${\varepsilon}$-carbides were precipitated in the ${\alpha}^{\prime}$-martensite laths. After tempering at $250^{\circ}C$ for 60 min, cementite was precipitated along the ${\alpha}^{\prime}$-martensite lath boundaries. The cementite was also observed in the specimens tempered at $350^{\circ}C$ for 30 min and $450^{\circ}C$ for 6 min, respectively. The globular ${\alpha}$-ferrite appeared at $350^{\circ}C-30min$ tempering, and the volume fraction of ${\alpha}$-ferrite increased when the tempering temperature was increased. The yield strength increased after tempering, and it reached a peak with the tempering condition of $180^{\circ}C-120min$, due to the nano-sized precipitates in the ${\alpha}^{\prime}$-martensite lath. After the tempering, the steel's ultimate tensile strength (UTS) was decreased due to the reduction in dislocation density and C segregation to lath boundaries. The highest elongation was observed at the $180^{\circ}C-120min$ tempering condition, due to the reduction of residual stress, and the lack of precipitates along the lath boundaries. The $180^{\circ}C-120min$ tempering condition was considered to have outstanding crash performance, according to toughness and anti-intrusion calculation results. In drop tower crash tests, the 30MnB5 door impact beam tempered at $180^{\circ}C$ for 120 min showed better crash performance compared to a 22MnB5 door impact beam.

HVPE 방법으로 성장된 알파-갈륨 옥사이드의 전처리 공정에 따른 특성 변화 (Effect of Pre-Treatment of Alpha-Ga2O3 Grown on Sapphire by Halide Vapor Phase Epitaxy)

  • 최예지;손호기;라용호;이영진;김진호;황종희;김선욱;임태영;전대우
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.426-431
    • /
    • 2019
  • In this study, we report the effect of pre-treatment of alpha-$Ga_2O_3$ grown on a sapphire substrate by halide vapor phase epitaxy (HVPE). During the pre-treatment process, 10 sccm of GaCl gas was injected to the sapphire substrate at $470^{\circ}C$. The surface morphologies of the alpha-$Ga_2O_3$ layers grown with various pre-treatment time (3, 5, and 10 min) were flat and crack-free. The transmittance of the alpha-$Ga_2O_3$ epi-layers was measured to analyze their optical properties. The transmittance was over 80% within the range of visible light. The strain in the alpha-$Ga_2O_3$ grown with a pre-treat 5 min was measured, and was found to be close to the theoretical XRD peak position. This can be explained by the reduction of strain having caused a lattice mismatch between the alpha-$Ga_2O_3$ layer and sapphire substrate. The calculated dislocation density of the screw and edge were $2.5{\times}10^5cm^{-2}$ and $8.8{\times}10^9cm^{-2}$, respectively.

Reparative, Neuroprotective and Anti-neurodegenerative Effects of Granulocyte Colony Stimulating Factor in Radiation-Induced Brain Injury Model

  • Gokhan Gurkan;Ozum Atasoy;Nilsu Cini;Ibrahim Halil Sever;Bahattin Ozkul;Gokhan Yaprak;Cansin Sirin;Yigit Uyanikgil;Ceren Kizmazoglu;Mumin Alper Erdogan;Oytun Erbas
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권5호
    • /
    • pp.511-524
    • /
    • 2023
  • Objective : This animal model aimed to compare the rat group that received brain irradiation and did not receive additional treatment (only saline) and the rat group that underwent brain irradiation and received Granulocyte colony stimulating factor (G-CSF) treatment. In addition, the effects of G-CSF on brain functions were examined by magnetic resonance (MR) imaging and histopathologically. Methods : This study used 24 female Wistar albino rats. Drug administration (saline or G-CSF) was started at the beginning of the study and continued for 15 days after whole-brain radiotherapy (WBRT). WBRT was given on day 7 of the start of the study. At the end of 15 days, the behavioral tests, including the three-chamber sociability test, open field test, and passive avoidance learning test, were done. After the behavioral test, the animals performed the MR spectroscopy procedure. At the end of the study, cervical dislocation was applied to all animals. Results : G-CSF treatment positively affected the results of the three-chamber sociability test, open-space test and passive avoidance learning test, cornu Ammonis (CA) 1, CA3, and Purkinje neuron counts, and the brain levels of brain-derived neurotrophic factor and postsynaptic density protein-95. However, G-CSF treatment reduced the glial fibrillary acidic protein immunostaining index and brain levels of malondialdehyde, tumor necrosis factor-alpha, nuclear factor kappa-B, and lactate. In addition, on MR spectroscopy, G-CSF had a reversible effect on brain lactate levels. Conclusion : In this first designed brain irradiation animal model, which evaluated G-CSF effects, we observed that G-CSF had reparative, neuroprotective and anti-neurodegenerative effects and had increased neurotrophic factor expression, neuronal counts, and morphology changes. In addition, G-CSF had a proven lactate-lowering effect in MR spectroscopy and brain materials.