Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.5.426

Effect of Pre-Treatment of Alpha-Ga2O3 Grown on Sapphire by Halide Vapor Phase Epitaxy  

Choi, Ye-ji (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Son, Hoki (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Ra, Yong-Ho (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Lee, Young-Jin (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Kim, Jin-Ho (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Hwang, Jonghee (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Kim, Sun Woog (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Lim, Tae-Young (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Jeon, Dae-Woo (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.5, 2019 , pp. 426-431 More about this Journal
Abstract
In this study, we report the effect of pre-treatment of alpha-$Ga_2O_3$ grown on a sapphire substrate by halide vapor phase epitaxy (HVPE). During the pre-treatment process, 10 sccm of GaCl gas was injected to the sapphire substrate at $470^{\circ}C$. The surface morphologies of the alpha-$Ga_2O_3$ layers grown with various pre-treatment time (3, 5, and 10 min) were flat and crack-free. The transmittance of the alpha-$Ga_2O_3$ epi-layers was measured to analyze their optical properties. The transmittance was over 80% within the range of visible light. The strain in the alpha-$Ga_2O_3$ grown with a pre-treat 5 min was measured, and was found to be close to the theoretical XRD peak position. This can be explained by the reduction of strain having caused a lattice mismatch between the alpha-$Ga_2O_3$ layer and sapphire substrate. The calculated dislocation density of the screw and edge were $2.5{\times}10^5cm^{-2}$ and $8.8{\times}10^9cm^{-2}$, respectively.
Keywords
${\alpha}-Ga_2O_3$; HVPE; Lattice mismatch;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. T. Neal, S. Mou, R. Lopez, J. V. Li, D. B. Thomson, K. D. Chabak, and G. H. Jessen, Sci. Rep., 7, 13218 (2017). [DOI:https://doi.org/10.1038/s41598-017-13656-x]   DOI
2 S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]   DOI
3 S. Zhang, X. Lian, Y. Ma, W. Liu, Y. Zhang, Y. Xu, and H. Cheng, J. Semicond., 39, 8 (2018). [DOI: https://doi.org/10.1088/1674-4926/39/8/083003]
4 H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, Appl. Phys. Express, 8, 015503 (2015). [DOI: https://doi.org/10.7567/apex.8.015503]   DOI
5 Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, APL Mater., 7, 022506 (2019). [DOI:https://doi.org/10.1063/1.5058059]   DOI
6 J. W. Roberts, J. C. Jarman, D. N. Johnstone, P. A. Midgley, P. R. Chalker, R. A. Oliver, and F.C.P. Massabuau, J. Cryst. Growth, 487, 23 (2018). [DOI: https://doi.org/10.1016/j.jcrysgro.2018.02.014]   DOI
7 T. Oshima, Y. Kato, M. Imura, Y. Nakayama, and M. Takeguchi, Appl. Phys. Express, 11, 065501 (2018). [DOI: https://doi.org/10.7567/apex.11.065501]   DOI
8 D. Shinohara and S. Fujita, Jpn. J. Appl. Phys., 47, 7311 (2008). [DOI: https://doi.org/10.1143/jjap.47.7311]   DOI
9 Y. Oshima, E. G. Villora, and K. Shimamura, Appl. Phys. Express, 8, 055501 (2015). [DOI: https://doi.org/10.7567/apex.8.055501]   DOI
10 V. Gottschalch, S. Merker, S. Blaurock, M. Kneiss, U. Teschner, M. Grundmann, and H. Krautscheid, J. Cryst. Growth, 510, 76 (2019). [DOI: https://doi.org/10.1016/j.jcrysgro.2019.01.018]   DOI
11 Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, APL Mater., 7, 022506 (2019). [DOI:https://doi.org/10.1063/1.5058059]   DOI
12 K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, Jpn. J. Appl. Phys., 51, 020201 (2012). [DOI: https://doi.org/10.7567/jjap.51. 020201]
13 Y. Ohba and R. Sata, J. Cryst. Growth, 221, 258 (2000). [DOI:https://doi.org/10.1016/s0022-0248(00)00695-3]   DOI
14 H. K. Son, Y. J. Choi, Y. H. Ra, J. H. Hwang, Y. J. Lee, M. J. Lee, J. H. Kim, S. W. Kim, T. Y. Lim, and D. W. Jeon, J. Korean Cryst., 28, 135 (2018).
15 H. K. Son, Y. J. Choi, J. H. Hwang, and D. W. Jeon, Solid State Sci. Technol., 8, Q3024 (2019). [DOI: https://doi.org/10.1149/2.0051907jss]   DOI
16 K. Doverspike, L. B. Rowland, D. K. Gaskill, and J. A. Freitas, J. Electron. Mater., 24, 269 (1995). [DOI: https://doi.org/10.1007/bf02659686]   DOI
17 H. K. Son and D. W. Jeon, J. Alloys Compd., 773, 631 (2019). [DOI: https://doi.org/10.1016/ j.jallcom.2018.09.230]   DOI
18 S. Rafique, M. R. Karim, J. M. Johnson, J. Hwang, and H. Zhao, Appl. Phys. Lett., 112, 052104 (2018). [DOI: https://doi.org/10.1063/1.5017616]   DOI
19 M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, ECS J. Solid State Sci. Technol., 6, Q3040 (2017). [DOI: https://doi.org/10.1149/2.0081702jss]   DOI
20 K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, Appl. Phys. Lett., 111, 012103 (2017). [DOI:https://doi.org/10.1063/1.4991363]   DOI
21 Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Z. Zhang, and Y. Zhou, Mater. Lett., 114, 26 (2014). [DOI:https://doi.org/10.1016/j.matlet.2013.09.096]   DOI