• Title/Summary/Keyword: Dislocation density

Search Result 225, Processing Time 0.031 seconds

Quantitative Analysis on Near Band Edge Images in GaAs Wafer (GaAs 웨이퍼의 대역단 영상에 대한 정량적 해석)

  • Kang, Seong-jun;Na, Cheolhun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.861-868
    • /
    • 2017
  • Near band infrared imaging technique has adopted for imaging EL2 and shallow level distributions in undoped semi-insulating LEC GaAs. This technique, which relies on the mapping of near bandgap infrared transmission, is both rapid and non-destructive. Until now no quantitative analysis has been reported for near band edge region which gives the reverse contrast on EL2 absorption images. This paper presents the spectral, spatial and temperature dependence of photoquenching forward and inverse mechanism in the band edge domain for cells and walls and for direct and inverted contrast conditions during transitory regimes. The difference in the threshold for the EL2w and EL2b defects could be attributed to the contribution of a different electrical assistance due to a different species of impurities. Quantitative analysis results show an increased density of EL2w and a small reduction of EL2b in the region of the walls where there is a high density of dislocations.

Effects of Annealing and Neutron Irradiation on Micostructural and Mechanical Properties of High Burn-up Zr Claddings (고연소도 신형 Zr피복관의 미세조직과 기계적 특성에 미치는 열처리 및 중성자 조사의 영향)

  • Baek, Jong Hyuk;Kim, Hyun Gil;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.151-164
    • /
    • 2004
  • The changes of microstructural and mechanical properties were evaluated for the high burn-up fuel claddings after the neutron irradiation of $1.8{\sim}3.1{\times}10^{20}n/cm^2$ (E>1.0 MEV) in HANARO research reactor. After the irradiation, the spot-type dislocations (a-type dislocations) were easily observed in most claddings, and the density of the dislocations was different depending on the grains and was higher at grain boundaries than within grains. As the final annealing temperature increased, the density of spot-type dislocations increased and the line-type dislocations (c-type dislocations) which was perpendicular to the <0002> direction, appeared sporadically in some claddings. However, the types of precipitates in the fuel claddings after the irradiation were not changed from that in unirradiated claddings. The mechanical properties including the hardness, strength and elongation after the irradiation were changed due to the formation of spot-type dislocations. That is, the increase in hardness and strength as well as the decrease in elongation after the irradiation was occurred simultaneously with increasing the final annealing temperature. Owing to the Nb contribution to the formation of spot-type dislocation during the irradiation, the increase in hardness and strength in higher Nb-contained Zr alloys after the irradiation was higher than that in lower Nb-contained Zr alloys.

4H-SiC bulk single crystal growth using recycled powder (재생 분말을 활용한 4H-SiC 벌크 단결정 성장)

  • Yeo, Im Gyu;Lee, Jae Yoon;Chun, Myong Chuel
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.169-174
    • /
    • 2022
  • This study is to verify the feasibility of SiC single crystal growth using recycled SiC powder. The fundamental physical properties such as particle size, shape, composition and impurities of the recycled powder were analyzed, and the sublimation behavior occurring inside the reactor were predicted using the basic data. As a result of comprehensive judgment, the physical properties of the recycled powder were suitable for single crystal growth, and single crystal growth experiments were conducted using this. 100 mm 4H-SiC single crystal ingot with a height of 25 mm was grown without polytype inclusion. In the case of micro-pipe density was 0.02 ea/cm2 and resistivity characteristics was 0.015~0.020 ohm·cm2, commercial level quality was obtained, but additional analysis related to dislocation density and stacking faults is required for device application.

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화)

  • Haeum Park;Yeon Woo Kim;Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Jung Gi Kim;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2023
  • Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF

Microstructure analyses of aluminum nitride (AlN) using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) (투과전자현미경과 전자후방산란회절을 이용한 AlN의 미세구조 분석)

  • Joo, Young Jun;Park, Cheong Ho;Jeong, Joo Jin;Kang, Seung Min;Ryu, Gil Yeol;Kang, Sung;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.127-134
    • /
    • 2015
  • Aluminum nitride (AlN) single crystals have attracted much attention for a next-generation semiconductor application because of wide bandgap (6.2 eV), high thermal conductivity ($285W/m{\cdot}K$), high electrical resistivity (${\geq}10^{14}{\Omega}{\cdot}cm$), and high mechanical strength. The bulk AlN single crystals or thin film templates have been mainly grown by PVT (sublimation) method, flux method, solution growth method, and hydride vapor phase epitaxy (HVPE) method. Since AlN suffers difficulty in commercialization due to the defects that occur during single crystal growth, crystalline quality improvement via defects analyses is necessary. Etch pit density (EPD) analysis showed that the growth misorientations and the defects in the AlN surface exist. Transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) analyses were employed to investigate the overall crystalline quality and various kinds of defects. TEM studies show that the morphology of the AlN is clearly influenced by stacking fault, dislocation, second phase, etc. In addition EBSD analysis also showed that the zinc blende polymorph of AlN exists as a growth defects resulting in dislocation initiator.

Different crystalline properties of undoped-GaN depending on the facet of patterns fabricated on a sapphire substrate

  • Lee, Kwang-Jae;Kim, Hyun-June;Park, Dong-Woo;Jo, Byoung-Gu;Kim, Jae-Su;Kim, Jin-Soo;Lee, Jin-Hong;Noh, Young-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.173-173
    • /
    • 2010
  • Recently, a patterned sapphire substrate (PSS) has been intensively used as one of the effective ways to reduce the dislocation density for the III-nitride epitaxial layers aiming for the application of high-performance, especially high-brightness, light-emitting diodes (LEDs). In this paper, we analyze the growth kinetics of the atoms and crystalline quality for the undopped-GaN depending on the facets of the pattern fabricated on a sapphire substrate. The effects of the PSS on the device characteristics of InGaN/GaN LEDs were also investigated. Several GaN samples were grown on the PSS under the different growth conditions. And the undoped-GaN layer was grown on a planar sapphire substrate as a reference. For the (002) plane of the undoped-GaN layer, as an example, the line-width broadening of the x-ray diffraction (XRD) spectrum on a planar sapphire substrate is 216.0 arcsec which is significantly narrower than that of 277.2 arcsec for the PSS. However, the line-width broadening for the (102) plane on the planar sapphire substrate (363.6 arcsec) is larger than that for the PSS (309.6 arcsec). Even though the growth parameters such as growth temperature, growth time, and pressure were systematically changed, this kind of trend in the line-width broadening of XRD spectrum was similar. The emission wavelength of the undoped-GaN layer on the PSS was red-shifted by 5.7 nm from that of the conventional LEDs (364.1 nm) under the same growth conditions. In addition, the intensity for the GaN layer on the PSS was three times larger than that of the planar case. The spatial variation in the emission wavelength of the undoped-GaN layer on the PSS was statistically ${\pm}0.5\;nm$ obtained from the photoluminescence mapping results throughout the whole wafer. These results will be discussed in terms of the mixed dislocation depending on the facets and the period of the patterns.

  • PDF

Operative treatment for Proximal Humeral Fracture (상완골 근위부 골절의 수술적 요법)

  • Park Jin-Young;Park Hee-Gon
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.2
    • /
    • pp.168-175
    • /
    • 2003
  • Fracture about proximal humerus may be classified as the articular segment or the anatomical neck, the greater tuberosity, the lesser tuberosity, and the shaft or surgical neck. Now, usually used, Neer's classification is based on the number of segments displaced, over 1cm of displaced or more than 45 degrees of angulation , rather than the number of fracture line . Absolute indication of a operative treatment a open fracture, the fracture with vascular injury or nerve injury , and unreductable fracture-dislocation . Inversely, the case that are severe osteoporosis, and eldly patient who can't be operated by strong internal fixation is better than arthroplasty used by primary prosthetic replacement and early rehabilitation program than open reduction and internal fixation. The operator make a decision for the patient who should be taken the open reduction and internal fixation, because it's different that anatomical morphology, bone density, condition of patient. The operator decide operation procedure. For example, percutaneous pinning, open reduction, plate & screws, wire tension bands combined with some intramedullary device are operation procedure that operator can decide . The poor health condition for other health problem, fracture with unstable vital sign and severe osteoporosis , are the relative contraindication. The stable fracture without dislocation is not the operative indication . The radiologic film of the prokimal humerus before the operation can not predict for fracture evaluation. It's necessary to good radiologic film for evaluation of fracture form. The trauma serise is better than the other radiologic film for evaluation. The accessary radiologic exam is able to help for evaluation of bone fragment and anatomy. The CT can be helpful in evaluating these injury, especially if the extract fracture type cannot be determined from plain roenterogram of the proximal humerus, bone of humerus head. If the dislocation is severe anatomically , we could consider to do three dimentional remodelling. The MRI doing for observing of bony morphology before the operation is not better than CT If we were suspicious of vascular injury, we could consider the angiography.

  • PDF

Astudy of internal defects and their effects in $CaF_2$ single crystals (형석단결정의 내부결함 및 그 영향에 관한 연구)

  • Seo, Soo-Hyung;Joo, Kyoung;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.419-423
    • /
    • 1998
  • The internal defects in $(CaF_2)$ single crystal were characterized by the observation of optical microscopy, the element analysis and the transmittance analysis. In bubble and negative crystal which are composed to crystal plane of (100) and (111), the spread negative crystal in $(CaF_2)$ crystal gave an effect of low transmittance. The precipitates formed in bubble as internal cavities were analyzed by using WDX. Violet colored-crystal had higher a dislocation density than non-colored crystal, and the atomic ratio between Ca and F changed by poor F ion. In this result, we could determine indirectly that violet color was occurred by poor F ion.

  • PDF

Additional Surgical Method Aimed to Increase Distractive Force during Occipitocervical Stabilization : Technical Note

  • Antar, Veysel;Turk, Okan
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.2
    • /
    • pp.277-281
    • /
    • 2018
  • Objective : Craniovertebral junctional anomalies constitute a technical challenge. Surgical opening of atlantoaxial joint region is a complex procedure especially in patients with nuchal deformity like basilar invagination. This region has actually very complicated anatomical and functional characteristics, including multiple joints providing extension, flexion, and wide rotation. In fact, it is also a bottleneck region where bones, neural structures, and blood vessels are located. Stabilization surgery regarding this region should consider the fact that the area exposes excessive and life-long stress due to complex movements and human posture. Therefore, all options should be considered for surgical stabilization, and they could be interchanged during the surgery, if required. Methods : A 53-year-old male patient applied to outpatients' clinic with complaints of head and neck pain persisting for a long time. Physical examination was normal except increased deep tendon reflexes. The patient was on long-term corticosteroid due to an allergic disease. Magnetic resonance imaging and computed tomography findings indicated basilar invagination and atlantoaxial dislocation.The patient underwent C0-C3-C4 (lateral mass) and additional C0-C2 (translaminar) stabilization surgery. Results : In routine practice, the sites where rods are bound to occipital plates were placed as paramedian. Instead, we inserted lateral mass screw to the sites where occipital screws were inserted on the occipital plate, thereby creating a site where extra rod could be bound.When C2 translaminar screw is inserted, screw caps remain on the median plane, which makes them difficult to bind to contralateral system. These bind directly to occipital plate without any connection from this region to the contralateral system.Advantages of this technique include easy insertion of C2 translaminar screws, presence of increased screw sizes, and exclusion of pullout forces onto the screw from neck movements. Another advantage of the technique is the median placement of the rod; i.e., thick part of the occipital bone is in alignment with axial loading. Conclusion : We believe that this technique, which could be easily performed as adjuvant to classical stabilization surgery with no need for special screw and rod, may improve distraction force in patients with low bone density.