• Title/Summary/Keyword: Disks

Search Result 914, Processing Time 0.154 seconds

The Effect of a Hot-wire Supporter on the Flow Between Corotating Disks in Shroud (밀폐된 동시회전 디스크 유동장에 대한 열선 지지대의 영향)

  • Kong Dae-Wee;Joo Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.663-666
    • /
    • 2002
  • Hard disk drived (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. The distribution of pressure disturbance on disks has relation to flow structure. To investigate the flow structure, time-resolved hot-wire measurements of the circumferential velocity component were obtained for the flow between the center pair of four disks of common radius $R_2$ coretating at angular velocity ${\Omega}$ in a fixed cylindrical enclosure. Hot-wire supporter acts as an obstruction in this case. The effects of rotating speed and size of hot-wire supporter diameter between disks on the flow driven by disks were investigated. Velocity spectra at the fixed space were measured to obtain the structure of inner and outer region in flow field.

  • PDF

POLARIZATION OF FIR EMISSION FROM T TAURI DISKS

  • Cho, Jung-Yeon;Lazarian, A.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.113-118
    • /
    • 2007
  • Recently far infra-red (FIR) polarization of the $850{\mu}m$ continuum emission from T Tauri disks has been detected. The observed degree of polarization is around 3 %. Since thermal emission from dust grains dominates the spectral energy distribution at the FIR regime, dust grains might be the cause of the polarization. We explore alignment of dust grains by radiative torque in T Tauri disks and provide predictions for polarized emission for disks viewed at different wavelengths and viewing angles. In the presence of magnetic field, these aligned grains produce polarized emission in infrared wavelengths. When we take a Mathis-Rumpl-Nordsieck-type distribution with maximum grain size of $500-1000{\mu}m$, the degree of polarization is around 2-3 % level at wavelengths larger than ${\sim}100{\mu}m$. Our study indicates that multifrequency infrared polarimetric studies of protostellar disks can provide good insights into the details of their magnetic structure.

Vibration Analysis of Rotating Laminated Composite Disks (복합적층 회전원판의 진동 해석)

  • Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.854-857
    • /
    • 2006
  • The centrifugal terce acting on a rotating disk creates the in-plane loads in radial and circumferential directions. Application of fiber reinforced composite materials to the relating disk can satisfy the demand for the increment of its rotating speed. However, the existing researches have been confined to lamina disks. This paper deals with the vibration analysis of rotating composite laminate disks. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating laminated disks. Galerkin's method is applied to obtain the series solution. The numerical results are given for the CFRP laminate disks with stacking sequence [0/90]s and [90/0]s.

  • PDF

Autonomous Network Combination of RAID System to read/write Performance Improvement (RAID 시스템에서 자율적 네트웍 조합에 의한 읽기/쓰기 성능 개선)

  • 최귀열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.158-163
    • /
    • 2003
  • When the number of disks array systems that contain multiple disk drives, system performance is limited by a bottleneck at a centralized controller at a communication path than uses a bus. A redundant array of inexpensive disks(RAID) consists of many disks to enable high performance and large capacity. We evaluate a scalable architecture called Autonomous network, in which the controller functions are distributed to all disk drives and each disk has autonomy in processing its tasks. Disks drives enable better scalability and more effective utilization of system resources than with a hierarchical system. Autonomous network provided high read/write performance throughput in proportion to the number of disks.

POLYCYCLIC AROMATIC HYDROCARBON (PAH) MOLECULES IN THE DISKS AROUND LOW MASS STARS

  • Kim, Kyoung Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.36.1-36.1
    • /
    • 2015
  • We present $5-14{\mu}m$ Infrared Spectrograph spectra of 14 T Tauri stars which show Polycyclic Aromatic Hydrocarbon (PAH) features and reside in 0.7 pc from ${\Theta}_1$ Ori C. The spectral types of nine out of 11 stars have spectral type information, with types ranging from K7-M5. These stars do not supply strong enough UV photons to excite PAH emission in their disks. Therefore, we consider the detection of PAH emission in disks around low mass stars illuminated by an external source of UV photons, namely, from Trapezium OB association, including ${\Theta}_1$ Ori C. The morphological features of PAH emission from most disks around K-M type host stars are unique, not belonging to any known classes of PAH features. We found that the PAH emission strengths decrease as the projected distance of the objects from ${\Theta}_1$ Ori C increase. We suggest future far-IR and submm/mm observations for better understanding of the characteristics and distribution of PAHs in these disks.

  • PDF

Stress and Vibration Analysis of Rotating Laminated Composite Disks (복합적층 회전원판의 응력 및 진동 해석)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.982-989
    • /
    • 2006
  • The centrifugal force acting on a rotating disk creates the in-plane loads in radial and circumferential directions. Application of fiber reinforced composite materials to the rotating disk can satisfy the demand for the increment of its rotating speed. However, the existing researches have been confined to lamina disks. This paper deals with the stress and vibration analysis of rotating laminated composite disks. The maximum strain theory for failure criterion is applied to determine the strength of the laminate disk from which the maximum allowable speed is obtained. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating laminated disks. The Galerkin method is applied to obtain the series solution. The numerical results are given for the cross-ply laminated composite disks.

A Study on the Fracture Phenomena in Optical Disks due to Increase of the Rotating Speed (회전속도 증가에 의한 광디스크의 파괴현상에 관한 연구)

  • Cho, Eun-Hyoung;Park, Jun-Min;Seo, Young-Sun;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.339-344
    • /
    • 2000
  • In this study, the fracture phenomena of optical disks are discussed and then some recommendations are presented to prevent the fracture. The fracture occurs when disks have crack on the inner radius of the disks. Since the crack growth and the fracture result from the stress concentration on the tip of the crack, a measure should be taken to overcome the stress concentration. This problem can be resolved by the structural modification of a disk. This study proposes 3 types of improved optical disks, which are robust to the disk fracture due to the high spinning speed of a disk. The first type is a disk reinforced by wire rings, the second type is a disk added by texture fibers, and the third type is a rubber-coated disk.

  • PDF

Numerical Simulation toy Flow Disturbance Between 3.5' Co-rotating Disks Unobstructed in Shroud (장애물이 없는 3.5' 동시회전 디스크의 유동교란에 관한 수치적 연구)

  • Kong Dae-Wee;Joo Won-Gu
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.242-245
    • /
    • 2005
  • The rotating flow in the space between co-rotating disks is of considerable importance in information storage systems. Hard disk drivers(HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speed requires an improved understanding of fluid motion in the space between disks. In this study, we have tried LES model for inner-disk flowfield to investigate the flow disturbance and the flow structure driven by co-rotating disks. The boundary pattern between inner region and outer region obtained lobe-shape structure clearly and its number has been validated on experimental data by our previous study. We obtain the spectra of velocity and pressure components with several frequencies. We revealed there are two kinds of disturbances, one is global wave propagation and another is local wave propagation on Ekman boundary layer.

  • PDF

Vibration Analysis of the Shaft-duplicate Disk System (축-이중 원판계의 진동해석)

  • Chun, Sang-Bok;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.896-906
    • /
    • 1997
  • The effect of duplicate flexible disks on the vibrational modes of a flexible rotor system is investigated by using an anlytical method based on the assumed modes method. The rotor model to be analyzed consists of duplicate disks on a flexible shaft. In modeling the system, centrifugal stiffening and disk flexibility effects are taken into account. To demonstrate the effectiveness of the method, a hard disk drive spindle system commonly used in personal computers and a simple flexible rotor system with two disks are selected as examples. In particular, the dynamic coupling between the vibrational modes of the shaft and the duplicate disks is investigated with the shaft rotational speed varied.

Discoloration Pattern of Lettuce Leaf Disks as Influenced by Sulfur Dioxide (아황산에 의한 상치 잎구조의 변색패턴)

  • 이미순
    • Journal of Plant Biology
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 1975
  • Development of a model system for mode of action studies of $SO_2$ was attempted with a plant tissue. Leaf disks, 1.0cm diameter, cut from the lamina of lettuce leaves, were floated on the testing medium and placed in light or dark condition to investigate the discoloration pattern with various sources of $SO_2$. Discoloration of leaf disks tended to be more serious with higher concentrations of $SO_2$ and on exposure to the light. Leaf disks were more severely discolored at lower pH with constant SO2 concentration. These discoloration patterns were highly reproducible and similar in all sources of $SO_2$. Spectrophotometric evidence suggested that light-mediated discoloration of leaf disks in the presence of $SO_2$ might occur mainly through chlorophyll ${\alpha}$ degradation.

  • PDF