• 제목/요약/키워드: Disk rotor

검색결과 150건 처리시간 0.029초

부하토크가 로터시스템의 동기휘돌림에 미치는 영향 (Effect of Load Torque on the Synchronous Whirling of a Rotor System)

  • 박상규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.132-137
    • /
    • 1997
  • In this study, the effect of load torque on the synchronous whirling of a rotor system has been studied analytically. Results show that the critical value of load torque to damping exists above which synchronous response decreases with increasing load torque. It has been also shown that the synchronous whirling amplitudes are more sensitive to the value of eccentricity and the ratio of disk radius to shaft length of the rotor system than other design parameters for a fixed value of load torque.

  • PDF

블레이드 디스크의 International Mistuning 최적화 : 감쇠와 커플링효과 (Optimization of Intentional Mistuning for Bladed Disk : Damping and Coupling Effect)

  • 최병근;김원철
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.429-436
    • /
    • 2005
  • 터보기계에서 mistuning은 구조적, 기하학적인 측면에서의 blade와 blade 사이의 미소한 특성차이를 의미하며, blade의 제작과정이나 운전 중 발생하는 마모의 차이에 의해 발생한다고 알려져 있다. Blade사이에서 발생하는 이러한 미소한 차이가 강제 진동 시 아주 큰 국부진동을 야기 시킬 수 있다는 사실이 여러 논문들에 의해 확인되었다. 최근에는 조화패턴의 intentional mistuning 배열을 사용하여 제작 및 사용 중에 발생하는 unintentional mistuning에 의한 blade의 강제진동 응답을 줄일 수 있다는 연구가 발표되었다. 따라서 본 논문에서는 두 가지 형태의 blade(A와 B)를 사용하고, blade감쇠와 coupling 효과를 고려하여 bladed disk의 강제진동응답을 줄일 수 있는 intentional mistuning의 최적배열패턴을 인공지능 알고리즘의 하나인 유전알고리즘과 steepest descent법을 이용하여 구하고자 한다. 그리고 단순 bladed disk와 17-bladed로 된 산업체 로터의 수치예제를 통하여 intentional mistuning 된 bladed disk의 이점을 증명하려고 한다.

디스크 드라이브 스핀들 계의 동특성 해석 프로그램 (Dynamic Analysis Program for Disk Drive Spindle Systems)

  • 오동호;김철순;박노열;노광춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.211-217
    • /
    • 1998
  • A disk rotor dynamic analysis program called by DR. DAP is developed for disk drive spindle systems to analyze dynamic characteristics in operation and to estimate the effects of excitation sources. It is applicable to design for stabilization and to select parts of disk drive spindle systems. The disk drive spindle system in this program is modeled as a flexible shaft with multiple flexible disks, which is supported by bearings and driven by electric motor, and its complicated coupled vibration characteristics are analyzed by using a substructure synthesis technique with the assumed-modes method. All the coupled modes of interest can be well predicted by the example of a three disk hard disk drive with the three tuning parameters. It is also shown that, with the introduction of the excitation sources associated with the defects of ball bearing systems, the magnetic unbalance of spindle motor, the program can well predict the stability of the system, i.e., the possibility of resonance.

  • PDF

자동차용 Brushless Disk Type Motor 개발연구 (The Development of Brushless Disk Type Motor for a Motorcar)

  • 장기찬;박창순;박순철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.620-622
    • /
    • 1992
  • Magnetic characteristics of a brushless disk type motor has been analyzed taking into account the magnetization distribution in the rotor magnet. This paper describes a method for calculating the 3D flux density in the air gap and calculates the induced voltage of the windings and the torque betweens the permanent magnet and the amateur current.

  • PDF

Finite Element Analysis of Temperature Distribution and Thermally Caused Deformation in Ventilated Disk Brakes

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.150-155
    • /
    • 1995
  • In order to analyze the thermal effects of the rotor models, the finite element technique was used in this study. The length of the hat was investigated as a design parameter. At the start of each brake application the disk surface temperature rapidly increases to a maximum value and then decays due to external cooling and thermal conduction to the hat. The calculated results indicate that the long length of the hat shows the minimum deformation in axial direction, which is related to the thermal problems, coned wear, vibration and noise.

다꾸지 기법에 의한 이륜자동차 브레이크 디스크의 마찰특성에 관한 연구 (A Study on Friction Characteristics for Motorcycle Disk Using Taguchi Experimental Design)

  • 전환영;류미라;이상재;박흥식
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.67-72
    • /
    • 2006
  • The effect of manufacturing parameters on wear and improve cooling of motorcycle break system was studied using a disk-on-pad type friction tester. Such parameters conditions have an effect on the wear and improve cooling factor such as applied load, sliding speed, frictional time and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factor. In this study, the wear and cooling characteristics using design of experiment containing 4 elements were investigated for an optimal condition for the best motorcycle disk break system employing Taguchi robust experimental design. From this study, the result was shown that vents have an effect on convection area improving more cooling ability and reduced wear of the disk.

  • PDF

깃 형상이 터보기계의 동특성에 미치는 영향 (Effects of Blade Shape on the Dynamics of Turbo-machinery)

  • 전상복
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.477-484
    • /
    • 1998
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the prewist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and prewist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

탄성 축-익 붙임 원판 계의 진동에 있어서 엇각 및 비틀림각의 영향 (Effects of Stagger and Pretwist Angles on the Vibration of Flexible Shaft-Bladed Disk Systems)

  • 전상복;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.101-109
    • /
    • 1997
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the pretwist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and pretwist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF

개폐균열이 존재하는 비대칭 회전부 및 비등방 고정부를 갖는 회전체의 모드해석 (Modal Analysis of Rotor System with Anisotropic Stator and Asymmetric Rotor in the Presence of Breathing Crack)

  • 한동주
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.442-450
    • /
    • 2006
  • This paper describes the new modal analysis method to detect the presence of the breathing crack in a general rotor system with disk asymmetry and stator anisotropy. It is proposed that the modal analysis using directional frequency response functions (dFRFs), which, accounting for the directivity in modes, clears the heavily over-lapping of other harmonics occurring from non-isotropic properties in addition to those due to crack, can provide an effective method to detect the modes by a crack. The simulations from the simple general rotor model show that the r-dFRFs (reverse dFRFs) for asymmetry confirms a good indicator of the presence of the breathing crack and the instability is primarily influenced by the shaft asymmetry than the breathing crack.