• Title/Summary/Keyword: Disk Brake

검색결과 220건 처리시간 0.041초

FFT-FEM을 이용한 자동차용 디스크 브레이크의 열 해석 (Thermal Analysis of Automotive Disc Brake Using FFT-FEM)

  • 최지훈;김도형;이인
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1253-1260
    • /
    • 2001
  • Transient thermal analysis of a three-dimensional axisymmetric automotive disk brake is presented in this paper. Temperature fields are obtained using a hybrid FFT-FEM scheme that combines Fourier transform techniques and finite element method. The use of a fast Fourier transform algorithm can avoid singularity problems and lead to inexpensive computing time. The transformed problem is solved with finite element scheme for each frequency domain. Inverse transforms are then performed for time domain solution. Numerical examples are presented for validation tests. Comparisons with analytical results show very good agreement. Also, a 3-D simulation, based upon an automotive brake disk model is performed.

반응 표면법을 이용한 이륜자동차 브레이크 디스크 마멸량에 관한 연구 (A Study on Wear loss of Motorcycle Brake Disk by Response Surface Method)

  • 전환영
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.44-49
    • /
    • 2008
  • In this research, I would like to choose sliding distance and ventilated hole number which affect to the amount of wear of disk and pad as experiment conditions of 'the amount of wear' through wear test of motorcycle brake disk. Also, I analyze the amount of wear according to the variation of coefficient of friction by using design of experiment that is being widely used in diverse areas. With the tests of least, I present the correlation of each experiment condition. Therefore, I analyzed the variation of the amount of wear of disk and pad according to test factors such as ventilated hole number, applied load, sliding speed, and sliding distance in wear test of motorcycle brake disk by applying the design of experiment. Also, I analyzed quantitatively the influence of test factors through Taguchi Robust experimental design, response surface and examined the most suitable level and estimation of the amount of wear of disk. From these, I reached the following conclusions. response surface design, mathematical model was constructed about amount of wear of disk and pad. The amount of wear that decrease according to increase of ventilated hole number, and it's increase according to Increase of applied load, sliding speed, and sliding distance.

  • PDF

외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성 (Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk)

  • 김영규;김상호;권석진;정수영;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.975-985
    • /
    • 2011
  • Cu-Matrix sintered brake pads and low alloyed heat resistance steel are most applied to basic brake system for high energy moving machine. In this research, we analyzed tribological characteristics for influence of air velocity between disk and pad. At low brake pressure with air flow, friction stability was decreased due to no formation of tribofilm at disk surface. But there are no significant change of friction coefficient at all test conditions. Wear rate of friction materials were decreased with increasing of air flow velocity. In result, air flow velocity influenced friction stability, wear rate of friction materials and disk but not friction coefficient.

  • PDF

관성에 따른 소결마찰재와 제동디스크간 마찰특성 연구 (Influence of Inertial Mass on Tribological Characteristics between Sintered Friction Material and Disk)

  • 이종성;강부병;이희성
    • Tribology and Lubricants
    • /
    • 제29권2호
    • /
    • pp.98-104
    • /
    • 2013
  • Cu-matrix-sintered brake pads and heat-resistant low-alloy steel are commonly applied to basic brake systems in high-energy moving machines. We analyzed how the tribological characteristics are influenced by the inertial mass. A high inertial mass decreased the friction coefficient by about 15% compared to a low inertial mass under all velocity conditions. The wear rates of the friction materials increased with the inertial mass. Thus, the inertial mass influences the friction coefficient and wear rate of the friction materials and disk but not the friction stability.

비접촉 방법에 의한 고속철도 디스크 브레이크에서의 온도측정에 관한 연구 (A Study on the Temperature Measurement at the Disk Brake of a High-Speed Rail Transit by the Non-Contact Method)

  • 이광재;전필수;유재석;이종화;최강윤;김석원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.820-825
    • /
    • 2002
  • As the speed of rail transit is higher, it is very important to secure the safety and confidence of the braking device and in the point of view, by means of the rise of the temperature from the friction between the disk and pad which are the actual part of a braking system, the damage of brake disk is the main cause to lose the safety of braking device. Therefore, in this study, to predict the danger of a disk brake and to know its max. temperature in the train service the module of a temperature measurement by the non-contact method was developed.

  • PDF

등가상수를 이용한 벤트레이트 디스크의 축대칭 온도 해석 (Axisymmetric Temperature Analysis of Ventilated Disk using Equivalent Parameters)

  • 여태인
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.137-142
    • /
    • 2003
  • In automotive brake systems, the frictional heat generated can cause high temperature at the interface of rotor and pad which may deteriorate the material properties of the sliding parts and can result in brake fade. Conventionally, a pie-shaped 3-dimentional model is adopted to calculate temperature of ventilated disk using finite element method. To overcome the difficulties in preparing 3D finite element model and reduce the computational time required, the ventilated rotor is to be analyzed, in this study, as an axisymmetric finite element model in which, taking into considerations the effects of cooling passages, a homogenization technique is used to obtain the equivalent thermal properties and boundary conditions for the elements placed at the vent holes. Numerical tests show the proposed procedure can be successfully applied in practice, replacing 3-dimensional thermal analysis of ventilated disk.

디스크 브레이크에서 마찰열과 패드에 작용하는 융합 접촉거동에 관한 연구 (A Study on Convergence Contact Behavior of Friction Heat and Pad on Disk Brake)

  • 한승철;이봉구
    • 한국융합학회논문지
    • /
    • 제9권1호
    • /
    • pp.283-289
    • /
    • 2018
  • 자동차 디스크 브레이크시스템에서는 열유속 및 열변형 등과 같은 이유로 마찰열이 균일하게 분산되지 않는다. 마찰열에 의한 열탄성 변형이 접촉압력 분포에 영향을 미치게 되고, 접촉하중이 디스크 브레이크 표면상의 작은 영역에 집중되어 열탄성 불안정성을 초래 할 수 있다. 본 연구에서는 실험적 계산식과 Kao 제안한 디스크와 패드의 접촉압력에 대한 해석방법을 참고로 하여 3차원 축대칭 모델을 통하여 실제로 제동 시 발생되는 디스크와 패드의 접촉을 고려한 온도해석 및 열변형 해석을 하였다. ANSYS를 사용하여 디스크와 패드의 접촉면에서 발생하는 열탄성 불안전성 문제를 열하중과 기계적 하중으로 동시에 고려하여 해석하였다. 디스크와 패드가 직접 접촉하는 3차원 축대칭 모델을 구성하여 디스크의 마찰면 온도, 열변형, 접촉 열응력을 관찰함으로써 디스크에서 일어나는 열적 거동을 보다 정확하게 관찰하였다.

고유진동수를 고려한 디스크 브레이크의 최적설계 (Optimal Design of a Disk-Brake Considering the Eigen-Frequency)

  • 유정훈;한상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.655-659
    • /
    • 2003
  • In this study, an improved topology design methodology that is combined with genetic algorithm, response surface method is provided to overcome the limitations of the ordinary topology optimization methods on the complex non-linear problem. the method is applied to a disc brake system for reducing an automobile brake noise. The low frequency that may induces the brake noise under the unstable mode is increased by obtaining the optimal topology. The result is verified by the analysis of variance and confirmed that the estimators for the approximation equations are highly reliable

  • PDF

플렉서블 타입 소결 브레이크 패드의 적용 연구 (Application of Flexible-Type Sintered Brake Pads)

  • 김성권;김상호;권석진;이희성
    • Tribology and Lubricants
    • /
    • 제27권1호
    • /
    • pp.19-24
    • /
    • 2011
  • Metallic sintered brake pads are often applied to mid/high speed train due to their high strength and thermal characteristics. Imbalance contact between discs and pads can greatly influence the life span, one sided wear, discs attack/crack and threat the safety of the train during operation. In this research, we analyzed pressure/temperature distribution between brake pads and disks. Analyzed data had been verified and modified to conduct further tests of flexible brake pads with small/full-scale dynamo test. Flexible brake pads were installed to high speed train to conduct further tests to identify the differences between rigid brake pads and flexible brake pads. In result, Flexible brake pads showed outstanding disk thermal stability, one sided wear, noise and wear rate than rigid brake pad.