• Title/Summary/Keyword: Diseases progression

Search Result 586, Processing Time 0.027 seconds

Oncolytic Viruses - A New Era for Cancer Therapy (종양 용해성 바이러스-암 치료에서의 새 시대)

  • Ngabire, Daniel;Niyonizigiye, Irvine;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.824-835
    • /
    • 2019
  • In recent decades, oncolytic viruses (OVs) have extensively been investigated as a potential cancer drug. Oncolytic viruses have primarily the unique advantage in the fact that they can only infect and destroy cancer cells. Secondary, oncolytic viruses induce the activation of specific adaptive immunity which targets tumor-associated antigens that were hidden during the initial cancer progression. In 2015, one genetically modified oncolytic virus, talimogene laherparepvec (T-VEC), was approved by the American Food and Drug Administration (FDA) for the treatment of melanoma. Currently, various oncolytic viruses are being investigated in clinical trials as monotherapy or in combination with preexistent cancer therapies like immunotherapy, radiotherapy or chemotherapy. The efficacy of oncolytic virotherapy relies on the balance between the induced anti-tumor immunity and the anti-viral response. Despite the revolutionary outcome, the development of oncolytic viruses for the treatment of cancer faces a number of obstacles such as delivery method, neutralizing antibodies and induction of antiviral immunity due to the complexity, variability and reactivity of tumors. Intratumoral administration has been successful reducing considerably solid tumors with no notable side effects unfortunately some tumors are not accessible (brain) and require a systemic administration of the oncolytic viruses. In order to overcome these hurdles, various strategies to enhance the efficacy of oncolytic viruses have been developed which include the insertion of transgenes or combination with immune-modulatory substances.

Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

  • Li, Tao;Wan, Yingchun;Sun, Lijuan;Tao, Shoujun;Chen, Peng;Liu, Caihua;Wang, Ke;Zhou, Changyu;Zhao, Guoqing
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.414-422
    • /
    • 2019
  • There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-$1{\beta}$ and tumor-necrosis factor-${\alpha}$ in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and $NF-{\kappa}B$ in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.

Interferon-γ-mediated secretion of tryptophanyl-tRNA synthetases has a role in protection of human umbilical cord blood-derived mesenchymal stem cells against experimental colitis

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Lee, Seung-Eun;Shin, Nari;Choi, Soon Won;Kang, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.318-323
    • /
    • 2019
  • Mesenchymal stem cells (MSCs) are multipotent adult stem cells that present immunosuppressive effects in experimental and clinical trials targeting various rare diseases including inflammatory bowel disease (IBD). In addition, recent studies have reported tryptophanyl-tRNA synthetase (WRS) possesses uncanonical roles such as angiostatic and anti-inflammatory effects. However, little is known about the function of WRS in MSC-based therapy. In this study, we investigated if a novel factor, WRS, secreted from MSCs has a role in amelioration of IBD symptoms and determined a specific mechanism underlying MSC therapy. Experimental colitis was induced by administration of 3% DSS solution to 8-week-old mice and human umbilical cord blood-derived MSCs (hUCB-MSCs) were injected intraperitoneally. Secretion of WRS from hUCB-MSCs and direct effect of WRS on isolated $CD4^+$ T cells was determined via in vitro experiments and hUCB-MSCs showed significant therapeutic rescue against experimental colitis. Importantly, WRS level in serum of colitis induced mice decreased and recovered by administration of MSCs. Through in vitro examination, WRS expression of hUCB-MSCs increased when cells were treated with interferon-${\gamma}$ ($IFN-{\gamma}$). WRS was evaluated and revealed to have a role in inhibiting activated T cells by inducing apoptosis. In summary, $IFN-{\gamma}$-mediated secretion of WRS from MSCs has a role in suppressive effect on excessive inflammation and disease progression of IBD and brings new highlights in the immunomodulatory potency of hUCB-MSCs.

Surgical Outcomes of Thalamic Tumors in Children: The Importance of Diffusion Tensor Imaging, Neuro-Navigation and Intraoperative Neurophysiological Monitoring

  • Kim, Jun-Hoe;Phi, Ji Hoon;Lee, Ji Yeoun;Kim, Kyung Hyun;Park, Sung-Hye;Choi, Young Hun;Cho, Byung-Kyu;Kim, Seung-Ki
    • Brain Tumor Research and Treatment
    • /
    • v.6 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • Background Recently, modern technology such as diffusion tensor imaging (DTI), neuro-navigation and intraoperative neurophysiological monitoring (IOM) have been actively adopted for the treatment of thalamic tumors. We evaluated surgical outcomes and efficacy of the aforementioned technologies for the treatment of pediatric thalamic tumors. Methods We retrospectively reviewed clinical data from 37 children with thalamic tumors between 2004 and 2017. There were 44 operations (27 tumor resections, 17 biopsies). DTI was employed in 17 cases, neuro-navigation in 23 cases and IOM in 14 cases. All diagnoses were revised according to the 2016 World Health Organization Classification of Tumors of the Central Nervous System. Progression-free survival (PFS) and overall survival (OS) rates were calculated, and relevant prognostic factors were analyzed. The median follow-up duration was 19 months. Results Fifteen cases were gross total resections (GTR), 6 subtotal resections (STR), and 6 partial resections (PR). Neurological status did not worsen after 22 tumor resections. There were statistically significant differences in terms of the extent of resection between the groups with DTI, neuro-navigation and IOM (n=12, GTR or STR=12) and the group without at least one of the three techniques (n= 15, GTR or STR=9, p=0.020). The mean PFS was $87.2{\pm}38.0$ months, and the mean OS $90.7{\pm}36.1$ months. The 5-year PFS was 37%, and the 5-year OS 47%. The histological grade ($p{\leq}0.001$) and adjuvant therapy (done vs. not done, p=0.016) were significantly related to longer PFS. The histological grade (p=0.002) and the extent of removal (GTR/STR vs. PR/biopsy, p=0.047) were significantly related to longer OS. Conclusion Maximal surgical resection was achieved with acceptable morbidity in children with thalamic tumors by employing DTI, neuro-navigation and IOM. Maximal tumor resection was a relevant clinical factor affecting OS; therefore, it should be considered the initial therapeutic option for pediatric thalamic tumors.

Inhibition of miR-128 Abates Aβ-Mediated Cytotoxicity by Targeting PPAR-γ via NF-κB Inactivation in Primary Mouse Cortical Neurons and Neuro2a Cells

  • Geng, Lijiao;Zhang, Tao;Liu, Wei;Chen, Yong
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1096-1106
    • /
    • 2018
  • Purpose: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. Materials and Methods: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. $PPAR-{\gamma}$ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and $NF-{\kappa}B$ activity was determined by a Caspase 3 Activity Assay Kit or $NF-{\kappa}B$ p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and $PPAR-{\gamma}$ 3'UTR. Results: MiR-128 expression was upregulated and $PPAR-{\gamma}$ expression was downregulated in plasma from AD patients and $amyloid-{\beta}$ $(A{\beta})-treated$ primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased $A{\beta}-mediated$ cytotoxicity through inactivation of $NF-{\kappa}B$ in MCN and N2a cells. Moreover, $PPAR-{\gamma}$ was a target of miR-128. $PPAR-{\gamma}$ upregulation attenuated $A{\beta}-mediated$ cytotoxicity by inactivating $NF-{\kappa}B$ in MCN and N2a cells. Furthermore, $PPAR-{\gamma}$ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and $NF-{\kappa}B$ activity in MCN and N2a cells. Conclusion: MiR-128 inhibitor decreased $A{\beta}-mediated$ cytotoxicity by upregulating $PPAR-{\gamma}$ via inactivation of $NF-{\kappa}B$ in MCN and N2a cells, providing a new potential target in AD treatment.

Changes in Immunological Factors Induced by H9N2 Avian Influenza Challenge in Broilers (저병원성 조류인플루엔자 감염에 따른 육계의 면역인자 변화)

  • Kim, Deok-Hwan;Kim, Kyu-Jik;Noh, Jin-Yong;Lee, Sun-Hak;Song, Chang-Seon;Park, Hae Kyoung;Nahm, Sang-Soep
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.229-235
    • /
    • 2020
  • Avian influenza virus infection, one of the most important diseases recognized in the poultry industry, is known to cause changes in cytokine and serum protein levels. However, the normal ranges and/or age-dependent changes in important cytokines and serum proteins associated with influenza infection have not been fully elucidated. In this study, the levels of cytokines (interleukin-1β, interleukin-6, and interferon-γ) and serum proteins (vitamin D binding protein and ovotransferrin) were determined in 1-week- to 4-week-old broilers at 1-week intervals after challenge with a low pathogenic influenza virus. The results showed that the physiological levels of cytokines and serum proteins varied with aging during the 4 weeks. The levels of interleukin-1β and interleukin-6 increased from 20% to 35% after influenza infection compared to those in the negative control group, indicating that these cytokines may be used to monitor disease progression.

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

Exploration of Beneficial Herbal Medicines to Attenuate Particulate Matter-induced Cellular Injury in Human Corneal Epithelial Cells (인간 각막상피세포에서 미세먼지로 인한 세포 손상을 완화할 수 있는 유익한 한약재의 탐색)

  • Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Park, Sung-Ho;Kim, Mi-Young;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.647-658
    • /
    • 2022
  • Particulate matter (PM) is known to be involved in the onset and progression of various diseases by promoting oxidative and inflammatory reactions as air pollutants containing various small particles that are harmful. In this study, the protective efficacy of herbal medicines was evaluated in human corneal epithelial cells (hCECs) to select natural products that can protect the eye, the primary organ directly exposed to external pollutants from PM. As a result, five candid ate herbal medicines [Cheonmundong, Asparagus Rhizome; Seokchangpo, Aciru Gramineri Rhizoma; Hwangryeon, Coptidis Rhizoma; Gamgug, Chrysanthemi Indici Flos; and Geumjanhwa (Marigold flower petals)] which showed inhibitory efficacy on PM2.5-induced cytotoxicity, were selected from among 12 candidate herbal medicines. To evaluate the antioxidant activity of these candidate substances, the reactive oxygen species (ROS) scavenging ability was investigated, and it was found that the extracts of Seokchangpo, Cheonmundong and Hwangryeon showed a significant inhibitory effect on PM2.5-induced ROS production, which was correlated with the preservation of mitochondrial activity. In addition, it was confirmed that they could block DNA damage caused by PM2.5 through analysis of 8-hydroxy-2'-deoxyguanosine generation and phosphorylated-H2A histone family member X (γ- H2AX) expression. Furthermore, the increase in inflammasome activity and inflammatory response in PM2.5-treated hCECs was also canceled in the presence of these extracts. Although additional studies are needed, the results of this study will be used as primary data to find novel natural compounds that protect hCECs from PM.

Effect of Non-contact Korean Medical Treatment for Patients Recovering at Home with Positive Coronavirus Disease 2019 Diagnostic Test Results at a Local Public Health Center: A Retrospective Chart Review (지역 보건소에서 시행한 코로나 바이러스 감염증-19 진단 검사상 양성인 재택치료 환자의 비대면 한의진료 효과: 후향적 차트 리뷰)

  • Jeon, Chaeheun;Choi, Daejun;Kim, Gyeongmuk;Kim, Hyejin;Leem, Jungtae;Chi, Gyoo-yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.130-137
    • /
    • 2022
  • Due to the coronavirus disease 2019 (COVID-19) pandemic, appropriate management of sequelae and treatment of infectious symptoms became increasingly important healthcare issues. Although the practice guidelines and treatment cases based on the East Asian traditional medicine have been reported, there are rare studies on the use of Korean medicine in Korea. Therefore, this study aimed to present the progress of non-contact Korean medical treatment for infected patients at a local public health center using retrospective chart review. A total of 18 patients were prescribed with 5 days of herbal decoction and medicine extract covered by the national health insurance. With the questionnaire form, the progression and improvement of symptoms before and after treatment were evaluated using the numerical rating scale (NRS), and the treatment satisfaction and opinions were obtained. The symptoms such as cough (5.56±2.23 to 2.89±2.14), sputum (6.11±1,75 to 3.28±2.47), sore throat (6.06±2.70 to 1.47±1.62), anorexia (5.56±2.63 to 1.94±2.21), nausea (3.75±1.71 to 1.17±1.11), diarrhea (3.40±2.63 to 1.50±1.51), chest tightness (4.93±2.46 to 2.29±2.30) and fatigue (6.44±1.79 to 2.67±1.88) all improved according to the NRS, and the satisfaction with herbal medicine treatment on a 5-point Likert scale was 4.24±0.90. No side effects and adverse reactions were reported. Thereupon non-contact Korean medical treatment can be concluded that it effectively reduces the COVID-19 infection mild symptoms in restrictive extent. Since the retrospective data does not include a control group, the more confirmative data is needed by multicenter and large-scale controlled clinical study afterwards.

Impact of Microbiota on Gastrointestinal Cancer and Anticancer Therapy (미생물 균총이 위장관암과 항암제에 미치는 영향)

  • Kim, Sa-Rang;Lee, Jung Min
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.391-410
    • /
    • 2022
  • Human microbiota is a community of microorganisms, including bacteria, fungi, and viruses, that inhabit various locations of the body, such as the gut, oral, and skin. Along with the development of metabolomic analysis and next-generation sequencing techniques for 16S ribosomal RNA, it has become possible to analyze the population for subtypes of microbiota, and with these techniques, it has been demonstrated that bacterial microbiota are involved in the metabolic and immunological processes of the hosts. While specific bacteria of microbiota, called commensal bacteria, positively affect hosts by producing essential nutrients and protecting hosts against other pathogenic microorganisms, dysbiosis, an abnormal microbiota composition, disrupts homeostasis and thereby has a detrimental effect on the development and progression of various types of diseases. Recently, several studies have reported that oral and gut bacteria of microbiota are involved in the carcinogenesis of gastrointestinal tumors and the therapeutic effects of anticancer therapy, such as radiation, chemotherapy, targeted therapy, and immunotherapy. Studying the complex relationships (bacterial microbiota-cancer-immunity) and microbiota-related carcinogenic mechanisms can provide important clues for understanding cancer and developing new cancer treatments. This review provides a summary of current studies focused on how bacterial microbiota affect gastrointestinal cancer and anticancer therapy and discusses compelling possibilities for using microbiota as a combinatorial therapy to improve the therapeutic effects of existing anticancer treatments.