• Title/Summary/Keyword: Disease protection

Search Result 869, Processing Time 0.026 seconds

Morphology and Molecular Characterization of Alternaria argyranthemi on Chrysanthemum coronarium in China

  • Luo, Huan;Xia, Zhen Zhou;Chen, Yun Yun;Zhou, Yi;Deng, Jian Xin
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.278-282
    • /
    • 2018
  • Chrysanthemum coronarium is an economically important plant in Asia, and used medicinally, ornamentally and as a vegetable. In April 2017, leaf spot disease on C. coronarium was observed in Shiyan, Hubei, China. A single-spore isolate was obtained and identified based on morphology and sequence analysis using four regions (rDNA ITS, GAPDH, $EF-1{\alpha}$, and RPB2). The results indicated that the fungus is Alternaria argyranthemi. The pathogenicity tests revealed that the species could cause severe leaf spot and blight disease on the host. This is the first report of leaf spot disease on C. coronarium caused by A. argyranthemi in the world, which is also a new record of Alternaria species in China.

Characteristics of the Infection of Tilletia laevis Kuhn (syn. Tilletia foetida (Wallr.) Liro.) in Compatible Wheat

  • Ren, Zhaoyu;Zhang, Wei;Wang, Mengke;Gao, Haifeng;Shen, Huimin;Wang, Chunping;Liu, Taiguo;Chen, Wanquan;Gao, Li
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.437-445
    • /
    • 2021
  • Tilletia laevis Kuhn (syn. Tilletia foetida (Wallr.) Liro.) causes wheat common bunt, which is one of the most devastating plant diseases in the world. Common bunt can result in a reduction of 80% or even a total loss of wheat production. In this study, the characteristics of T. laevis infection in compatible wheat plants were defined based on the combination of scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. We found T. laevis could lead to the abnormal growth of wheat tissues and cells, such as leakage of chloroplasts, deformities, disordered arrangements of mesophyll cells and also thickening of the cell wall of mesophyll cells in leaf tissue. What's more, T. laevis teliospores were found in the roots, stems, flag leaves, and glumes of infected wheat plants instead of just in the ovaries, as previously reported. The abnormal characteristics caused by T. laevis may be used for early detection of this pathogen instead of molecular markers in addition to providing theoretical insights into T. laevis and wheat interactions for breeding of common bunt resistance.

Genetic Similarity between Cotton Leafroll Dwarf Virus and Chickpea Stunt Disease Associated Virus in India

  • Mukherjee, Arup Kumar;Mukherjee, Prasun Kumar;Kranthi, Sandhya
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.580-583
    • /
    • 2016
  • The cotton leafroll dwarf virus (CLRDV) is one of the most devastating pathogens of cotton. This malady, known as cotton blue disease, is widespread in South America where it causes huge crop losses. Recently the disease has been reported from India. We noticed occurrence of cotton blue disease and chickpea stunt disease in adjoining cotton and chickpea fields and got interested in knowing if these two viral diseases have some association. By genetic studies, we have shown here that CLRDV is very close to chickpea stunt disease associated virus (CpSDaV). We were successful in transmitting the CLRDV from cotton to chickpea. Our studies indicate that CpSDaV and CLRDV in India are possibly two different strains of the same virus. These findings would be helpful in managing these serious diseases by altering the cropping patterns.

Radiation Induces Phosphorylation of STAT3 in a Dose- and Time-dependent Manner

  • Gao, Ling;Li, Feng-Sheng;Chen, Xiao-Hua;Liu, Qiao-Wei;Feng, Jiang-Bin;Liu, Qing-Jie;Su, Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6161-6164
    • /
    • 2014
  • Background: We have reported the radiation could activate STAT3, which subsequently promotes the invasion of A549 cells. We here explored the dose- and time-response of STAT3 to radiation and the effect of radiation on upstream signaling molecules. Materials and Methods: A549 cells were irradiated with different doses of ${\gamma}$-rays. The expression of and nucleus translocation of p-STAT3 in A549 cells were detected by immunoblotting and immunofluorescence, respectively. The level of phosphorylated EGFR was also assessed by immunoblotting, and IL-6 expression was detected by real time PCR and ELISA. Results: Radiation promoted the phosphorylation of STAT3 at Y705 in a dose- and time-dependent manner and nuclear translocation. The level of phosphorylated EGFR in A549 cells increased after radiation. In additional, the mRNA and protein levels of IL-6 in A549 cells were also up regulated by radiation. Conclusions: STAT3 is activated by radiation in a dose-and time-dependent manner, probably due to radiation-induced activation of EGFR or secretion of IL-6 in A549 cells.

Identification and Characterization of Gonatobotryum apiculatum Causing Leaf Spot and Blight on Sinowilsonia henryi

  • Gao, Ying;Liu, Hai Feng;Song, Zheng Xing;Du, Xiao Ying;Deng, Jian Xin
    • Mycobiology
    • /
    • v.48 no.1
    • /
    • pp.70-74
    • /
    • 2020
  • Sinowilsonia henryi is a rare and endangered plant, as well as an endemic species in China. In July 2018, leaf spot and blight disease was observed on S. henryi in Yichang, Hubei, China. A fungus isolated from disease tissues was identified as Gonatobotryum apiculatum based on morphology and sequence analyses of ITS and LSU regions. Phylogenetic analyses indicated that the species belongs to Dothioraceae (Dothideales). Morphologically, the species produced two distinct types of conidia from authentic media, both conidia were described here. Pathogenicity tests showed that the fungus is a pathogen causing leaf spots on S. henryi. This is the first report of leaf spot and blight disease on S. henryi caused by G. apiculatum in China.

Review of Researches on Clubroot Disease of Chinese Cabbage in Korea and Future Tasks for Its Management (우리나라 배추 뿌리혹병 연구 현홍과 향후과제)

  • Kim, Choong-Hoe;Cho, Won-Dae;Lee, Sang-Bum
    • Research in Plant Disease
    • /
    • v.9 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Clubroot disease of curcifer crops caused by Plasmodiophora brassicae had been first reported in 1928 in Korea, and maintained mild occurrence until 1980s. Since 1990s the disease has become severe in alpine areas of Kyonggi and Kangwon, gradually spread to plain fields throughout the country, and remains as the great-est limiting factor for its production. Researches on the disease has begun in late 1990s after experiencing severe epidemics. Survey of occurrence and etiological studies have been carried out, particularly, on the pathogen physiology, race identification, quantification of soil pathogen population, and host spectrum of the pathogen. Ecology of gall formation and its decay, yield loss assessment associated with time of infection, and relationships between crop rotation and the disease incidence was also studied during late 1990s. In studies of its control, more than 200 crucifer cultivars were evaluated for their resistance to the disease. Lime applica-tion to field soil was also attempted to reduce the disease incidence. Resistant radish and welsh onion were recommended as rotation crops with crucifers after 3-year field experiments. However, so for, most studies on clubroot disease in Korea have been focused on chemical control. Two fungicides, fluazinam and flusulfamide, were selected and extensively studied on their application technologies and combination effects with lime application or other soil treatment. To develop environmentally-friendly control methods, solar-disinfection of soil, phosphoric acid as a nontoxic compound, and root-parasiting endophytes as biocontrol agents were examined for their effects on the disease in fields. In the future, more researches are needed to be done on development of resistant varieties effective to several races of the pathogen, establishment of economically-sound crop rotation system, and improvement of soil-disinfection technique applicable to Korean field condi-tion, and development of methodology of pretreatment of fungicides onto seeds and seedbeds.

Synergistic effect of ribavirin and vaccine for protection during early infection stage of foot-and-mouth disease

  • Choi, Joo-Hyung;Jeong, Kwiwan;Kim, Su-Mi;Ko, Mi-Kyeong;You, Su-Hwa;Lyoo, Young S.;Kim, Byounghan;Ku, Jin-Mo;Park, Jong-Hyeon
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.788-797
    • /
    • 2018
  • In many countries, vaccines are used for the prevention of foot-and-mouth disease (FMD). However, because there is no protection against FMD immediately after vaccination, research and development on antiviral agents is being conducted to induce protection until immunological competence is produced. This study tested whether well-known chemicals used as RNA virus treatment agents had inhibitory effects on FMD viruses (FMDVs) and demonstrated that ribavirin showed antiviral effects against FMDV in vitro/in vivo. In addition, it was observed that combining the administration of the antiviral agents orally and complementary therapy with vaccines synergistically enhanced antiviral activity and preserved the survival rate and body weight in the experimental animals. Antiviral agents mixed with an adjuvant were inoculated intramuscularly along with the vaccines, thereby inhibiting virus replication after injection and verifying that it was possible to induce early protection against viral infection prior to immunity being achieved through the vaccine. Finally, pigs treated with antiviral agents and vaccines showed no clinical signs and had low virus excretion. Based on these results, it is expected that this combined approach could be a therapeutic and preventive treatment for early protection against FMD.

Identification and Characterization of Alternaria iridiaustralis Causing Leaf Spot on Iris ensata in China

  • Luo, Huan;Tao, Ya Qun;Fan, Xiao Yan;Oh, Sang Keun;Lu, Hong Xue;Deng, Jian Xin
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.168-171
    • /
    • 2018
  • In 2016, a severe leaf spot disease was found on Iris ensata Thumb. in Nanjing, China. The symptom was elliptical, fusiform, or irregularly necrotic lesion surrounded by a yellow halo, from which a small-spored Alternaria species was isolated. The fungus was identified as Alternaria iridiaustralis based on morphological characteristics. The pathogenicity tests revealed that the fungus was the causal pathogen of the disease. Phylogenic analyses using sequences of ITS, gpd, endoPG, and RPB2 genes confirmed the morphological identification. This study is the first report of A. iridiaustralis causing leaf spots on I. ensata in China.

Identification of Fusarium fujikuroi Isolated from Barnyard Grass and Possibility of Inoculum Source of Bakanae Disease on Rice (피에서 분리한 Fusarium fujikuroi의 동정 및 벼 키다리병의 전염원 가능성)

  • Choi, Hyo-Won;Lee, Yong-Hwan;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee;Chun, Se-Chul
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.82-85
    • /
    • 2011
  • Bakanae disease symptom were observed in barnyard grass in paddy field in Heanam, Jeonnam. The infected plants were blighted and white mass of spore were formed on the stem. Fusarium species were isolated from infected stem and the isolates were identified as Fusarium fujikuroi based on their morphological and molecular characteristics. The isolates of F. fujikuroi were assigned to reference of F. fujikuroi among related Fusarium species based on the translation elongation factor 1-alpha gene sequence. Pathogenicity of the fungal isolates was confirmed on seedlings of rice and barnyard grass by artificial inoculation. The results indicated that barnyard grass can be inoculum source of Bakanae disease on rice. Thus, effective weed management is necessary to Bakanae disease control and healthy seed production.

Outbreak of Fire Blight of Apple and Asian Pear in 2015-2019 in Korea (2015-2019년 국내 과수 화상병 발생)

  • Ham, Hyeonheui;Lee, Young-Kee;Kong, Hyun Gi;Hong, Seong Jun;Lee, Kyong Jae;Oh, Ga-Ram;Lee, Mi-Hyun;Lee, Yong Hwan
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.222-228
    • /
    • 2020
  • Erwinia amylovora, a causal bacterium of fire blight disease, is registered as a prohibited quarantine pathogen in Korea. To control the disease, the government should diagnose the disease, dig and bury the host trees when fire blight occurs. Fire blight was the first reported in 43 orchards of Anseong, Cheonan, and Jecheon in 2015, and 42.9 ha of host trees were eradicated. However, the disease spread to eleven cities, so that 348 orchards and 260.4 ha of host trees were eradicated until 2019. Fire blight of Asian pear occurred mainly in the southern part of Gyeonggi, and Chungnam province, on average of 29±9.2 orchards per year. And the age of the infected trees were mostly 20-30 years old. In apple trees, the disease occurred mainly in the northern part of Gyeonggi, Gangwon, and Chungbuk province, on average of 41±57.6 orchards per year, increased highly in 2018 and 2019. The age of infected apple trees were under 20 years old. Therefore, because the disease spread rapidly in young apple trees, spraying control agents to the trees in a timely manner and removing infected trees quickly are important to prevent the spread of fire blight in the orchard of immature trees.