• 제목/요약/키워드: Disease Network

검색결과 842건 처리시간 0.028초

서울시 구로구에서 COVID-19 발생 전·후 초미세먼지(PM2.5) 농도 변화에 따른 인구집단 노출평가 (Evaluation of Population Exposures to PM2.5 before and after the Outbreak of COVID-19)

  • 김동준;민기홍;최영태;신준섭;우재민;김동준;신정현;조만수;성경화;최윤형;이채관;최길용;양원호
    • 한국환경보건학회지
    • /
    • 제47권6호
    • /
    • pp.521-529
    • /
    • 2021
  • Background: The coronavirus disease (COVID-19) has caused changes in human activity, and these changes may possibly increase or decrease exposure to fine dust (PM2.5). Therefore, it is necessary to evaluate the exposure to PM2.5 in relation to the outbreak of COVID-19. Objectives: The purpose of this study was to compare and evaluate the exposure to PM2.5 concentrations by the variation of dynamic populations before and after the outbreak of COVID-19. Methods: This study evaluated exposure to PM2.5 concentrations by changes in the dynamic population distribution in Guro-gu, Seoul, before and after the outbreak of COVID-19 between Jan and Feb, 2020. Gurogu was divided into 2,204 scale standard grids of 100 m×100 m. Hourly PM2.5 concentrations were modeled by the inverse distance weight method using 24 sensor-based air monitoring instruments. Hourly dynamic population distribution was evaluated according to gender and age using mobile phone network data and time-activity patterns. Results: Compared to before, the population exposure to PM2.5 decreased after the outbreak of COVID-19. The concentration of PM2.5 after the outbreak of COVID-19 decreased by about 41% on average. The variation of dynamic population before and after the outbreak of COVID-19 decreased by about 18% on average. Conclusions: Comparing before and after the outbreak of COVID-19, the population exposures to PM2.5 decreased by about 40%. This can be explained to suggest that changes in people's activity patterns due to the outbreak of COVID-19 resulted in a decrease in exposure to PM2.5.

Effects of exploration and molecular mechanism of CsV on eNOS and vascular endothelial functions

  • Zuo, Deyu;Jiang, Heng;Yi, Shixiong;Fu, Yang;Xie, Lei;Peng, Qifeng;Liu, Pei;Zhou, Jie;Li, Xunjia
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.501-514
    • /
    • 2022
  • This study aimed to investigate the effects and potential mechanisms of Chikusetsusaponin V (CsV) on endothelial nitric oxide synthase (eNOS) and vascular endothelial cell functions. Different concentrations of CsV were added to animal models, bovine aorta endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs) cultured in vitro. qPCR, Western blotting (WB), and B ultrasound were performed to explore the effects of CsV on mouse endothelial cell functions, vascular stiffness and cellular eNOS mRNA, protein expression and NO release. Bioinformatics analysis, network pharmacology, molecular docking and protein mass spectrometry analysis were conducted to jointly predict the upstream transcription factors of eNOS. Furthermore, pulldown and ChIP and dual luciferase assays were employed for subsequent verification. At the presence or absence of CsV stimulation, either overexpression or knockdown of purine rich element binding protein A (PURA) was conducted, and PCR assay was employed to detect PURA and eNOS mRNA expressions, Western blot was used to detect PURA and eNOS protein expressions, cell NO release and serum NO levels. Tube formation experiment was conducted to detect the tube forming capability of HUVECs cells. The animal vasodilation function test detected the vasodilation functions. Ultrasonic detection was performed to determine the mouse aortic arch pulse wave velocity to identify aortic stiffness. CsV stimulus on bovine aortic cells revealed that CsV could upregulate eNOS protein levels in vascular endothelial cells in a concentration and time dependent manner. The expression levels of eNOS mRNA and phosphorylation sites Ser1177, Ser633 and Thr495 increased significantly after CsV stimulation. Meanwhile, CsV could also enhance the tube forming capability of HUVECs cells. Following the mice were gavaged using CsV, the eNOS protein level of mouse aortic endothelial cells was upregulated in a concentration- and time-dependent manner, and serum NO release and vasodilation ability were simultaneously elevated whereas arterial stiffness was alleviated. The pulldown, ChIP and dual luciferase assays demonstrated that PURA could bind to the eNOS promoter and facilitate the transcription of eNOS. Under the conditions of presence or absence of CsV stimulation, overexpression or knockdown of PURA indicated that the effect of CsV on vascular endothelial function and eNOS was weakened following PURA gene silence, whereas overexpression of PURA gene could enhance the effect of CsV upregulating eNOS expression. CsV could promote NO release from endothelial cells by upregulating the expression of PURA/eNOS pathway, improve endothelial cell functions, enhance vasodilation capability, and alleviate vessel stiffness. The present study plays a role in offering a theoretical basis for the development and application of CsV in vascular function improvement, and it also provides a more comprehensive understanding of the pharmacodynamics of CsV.

혈액종양 입원 환자 대상 임상약사의 처방중재활동 및 회피비용 분석 (Cost Avoidance and Clinical Pharmacist Interventions on Hospitalized Patients in Hematologic malignancies)

  • 김예슬;홍소연;김윤희;최경숙;이정화;이주연;김은경
    • 한국임상약학회지
    • /
    • 제32권3호
    • /
    • pp.215-225
    • /
    • 2022
  • Background: Patients with hematologic cancers have a risk of drug-related problems (DRPs) from medications associated with chemotherapy and supportive care. Although the role of oncology pharmacists has been widely documented in the literature, few studies have reported its impact on cost reduction. This study aimed to describe the activities of oncology pharmacists with respect to hematologic diseases and evaluate the associated cost avoidance. Methods: From January to July 2021, patients admitted to the department of hemato-oncology at Seoul National University, Bundang Hospital were studied. The activities of oncology pharmacists were reported by DRP type following the Pharmaceutical Care Network version 9.1 guidelines, and the acceptance rate was calculated. The avoided cost was estimated based on the cost of the pharmacy intervention, pharmacist manpower, and prescriptions associated with the intervention. Results: Pharmacists intervened in 584 prescriptions from 208 patients during the study period. The most prevalent DRP was "adverse drug event (possibly) occurring" (32.4%), followed by "effect of drug treatment not optimal" (28.6%). "Drug selection" (42.5%) and "dose selection" (30.3%) were the most common causes of DRPs. The acceptance rate of the interventions was 97.1%. The total avoidance cost was KRW 149,468,321; the net profit of the avoidance cost, excluding labor costs, was KRW 121,051,690; and the estimated cost saving was KRW 37,223,748. Conclusion: Oncology pharmacists identified and resolved various types of DRPs from prescriptions for patients with hematologic disease, by reviewing the prescriptions. Their clinical service contributed to enhanced patient safety and the avoidance of associated costs.

COVID-19 관련 연구 동향에 대한 분석 - MEDLINE 등재 국내 의학 학술지를 중심으로 - (Analysis of Research Trends about COVID-19: Focusing on Medicine Journals of MEDLINE in Korea)

  • 서미진;이지수
    • 한국비블리아학회지
    • /
    • 제34권3호
    • /
    • pp.135-161
    • /
    • 2023
  • 본 연구는 국내 의학 학술지에 발행된 COVID-19(Coronavirus Disease 2019) 논문의 연구 동향을 분석하였다. 연구 대상은 MEDLINE에 등재된 의학 분야 학술지 25종으로 총 800건을 선정하였으며, 이를 대상으로 저자 분석, 빈도 분석, 주제 분석, 토픽모델링을 수행하였다. 연구 결과, 저자의 소속 기관은 국내 기관이 76.96%였으며, 국외 기관 저자의 비율은 소폭 감소하였다. 저자의 전공은 '내과학'(32.85%), '예방의학/직업환경의학'(16.23%), '방사선과학'(5.74%), '소아과학'(5.50%) 순이었으며, 공동 연구가 진행된 논문은 435건(54.38%)이었다. 저자 키워드는 'COVID19'(674번), 'SARSCoV2'(245번), 'Coronavirus'(81번), 'Vaccine'(80번) 등이 상위 키워드로 도출되었다. 전체 기간 등장한 단어는 'COVID19', 'SARSCoV2', 'Coronavirus', 'Korea', 'Pandemic', 'Mortality' 등 6개이다. MeSH 용어와 저자 키워드를 대상으로 동시 출현 네트워크 분석을 실시하였으며, 공통적으로 'covid-19', 'sars-cov-2', 'public health' 등의 중심 주제어가 도출되었다. 토픽모델링에서는 '백신 접종', 'COVID-19 발생 현황', '오미크론 변이 바이러스', '정신 건강, 방역 조치', '국내 감염의 전파 및 관리' 등 총 5가지의 토픽이 확인되었다. 이 연구를 통하여 '국제적 공중보건 비상사태'(Public Health Emergency of International Concern, PHEIC) 기간 동안 발행된 국내 COVID-19 논문의 연구 영역과 연도별 주요 키워드를 파악할 수 있었다.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • 제24권3호
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

COVID-19 Vaccination Alters NK Cell Dynamics and Transiently Reduces HBsAg Titers Among Patients With Chronic Hepatitis B

  • Hyunjae Shin;Ha Seok Lee;Ji Yun Noh;June-Young Koh;So-Young Kim;Jeayeon Park;Sung Won Chung;Moon Haeng Hur;Min Kyung Park;Yun Bin Lee;Yoon Jun Kim;Jung-Hwan Yoon;Jae-Hoon Ko;Kyong Ran Peck;Joon Young Song;Eui-Cheol Shin;Jeong-Hoon Lee
    • IMMUNE NETWORK
    • /
    • 제23권5호
    • /
    • pp.39.1-39.15
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) vaccination may non-specifically alter the host immune system. This study aimed to evaluate the effect of COVID-19 vaccination on hepatitis B surface Ag (HBsAg) titer and host immunity in chronic hepatitis B (CHB) patients. Consecutive 2,797 CHB patients who had serial HBsAg measurements during antiviral treatment were included in this study. Changes in the HBsAg levels after COVID-19 vaccination were analyzed. The dynamics of NK cells following COVID-19 vaccination were also examined using serial blood samples collected prospectively from 25 healthy volunteers. Vaccinated CHB patients (n=2,329) had significantly lower HBsAg levels 1-30 days post-vaccination compared to baseline (median, -21.4 IU/ml from baseline), but the levels reverted to baseline by 91-180 days (median, -3.8 IU/ml). The velocity of the HBsAg decline was transiently accelerated within 30 days after vaccination (median velocity: -0.06, -0.39, and -0.04 log10 IU/ml/year in pre-vaccination period, days 1-30, and days 31-90, respectively). In contrast, unvaccinated patients (n=468) had no change in HBsAg levels. Flow cytometric analysis showed that the frequency of NK cells expressing NKG2A, an NK inhibitory receptor, significantly decreased within 7 days after the first dose of COVID-19 vaccine (median, -13.1% from baseline; p<0.001). The decrease in the frequency of NKG2A+ NK cells was observed in the CD56dimCD16+ NK cell population regardless of type of COVID-19 vaccine. COVID-19 vaccination leads to a rapid, transient decline in HBsAg titer and a decrease in the frequency of NKG2A+ NK cells.

Low Neutralizing Activities to the Omicron Subvariants BN.1 and XBB.1.5 of Sera From the Individuals Vaccinated With a BA.4/5-Containing Bivalent mRNA Vaccine

  • Eliel Nham;Jineui Kim;Jungmin Lee;Heedo Park;Jeonghun Kim;Sohyun Lee;Jaeuk Choi;Kyung Taek Kim;Jin Gu Yoon;Soon Young Hwang;Joon Young Song;Hee Jin Cheong;Woo Joo Kim;Man-Seong Park;Ji Yun Noh
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.43.1-43.10
    • /
    • 2023
  • The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has provided insights for updating current coronavirus disease 2019 (COVID-19) vaccines. We examined the neutralizing activity of Abs induced by a BA.4/5-containing bivalent mRNA vaccine against Omicron subvariants BN.1 and XBB.1.5. We recruited 40 individuals who had received a monovalent COVID-19 booster dose after a primary series of COVID-19 vaccinations and will be vaccinated with a BA.4/5-containing bivalent vaccine. Sera were collected before vaccination, one month after, and three months after a bivalent booster. Neutralizing Ab (nAb) titers were measured against ancestral SARS-CoV-2 and Omicron subvariants BA.5, BN.1, and XBB.1.5. BA.4/5-containing bivalent vaccination significantly boosted nAb levels against both ancestral SARS-CoV-2 and Omicron subvariants. Participants with a history of SARS-CoV-2 infection had higher nAb titers against all examined strains than the infection-naïve group. NAb titers against BN.1 and XBB.1.5 were lower than those against the ancestral SARS-CoV-2 and BA.5 strains. These results suggest that COVID-19 vaccinations specifically targeting emerging Omicron subvariants, such as XBB.1.5, may be required to ensure better protection against SARS-CoV-2 infection, especially in high-risk groups.

Interactions between NCR+ILC3s and the Microbiome in the Airways Shape Asthma Severity

  • Jongho Ham;Jihyun Kim;Sungmi Choi;Jaehyun Park;Min-gyung Baek;Young-Chan Kim;Kyoung-Hee Sohn;Sang-Heon Cho;Siyoung Yang;Yong-Soo Bae;Doo Hyun Chung;Sungho Won;Hana Yi;Hye Ryun Kang;Hye Young Kim
    • IMMUNE NETWORK
    • /
    • 제21권4호
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Asthma is a heterogeneous disease whose development is shaped by a variety of environmental and genetic factors. While several recent studies suggest that microbial dysbiosis in the gut may promote asthma, little is known about the relationship between the recently discovered lung microbiome and asthma. Innate lymphoid cells (ILCs) have also been shown recently to participate in asthma. To investigate the relationship between the lung microbiome, ILCs, and asthma, we recruited 23 healthy controls (HC), 42 patients with non-severe asthma, and 32 patients with severe asthma. Flow cytometry analysis showed severe asthma associated with fewer natural cytotoxicity receptor (NCR)+ILC3s in the lung. Similar changes in other ILC subsets, macrophages, and monocytes were not observed. The asthma patients did not differ from the HC in terms of the alpha and beta-diversity of the lung and gut microbiomes. However, lung function correlated positively with both NCR+ILC3 frequencies and microbial diversity in the lung. Sputum NCR+ILC3 frequencies correlated positively with lung microbiome diversity in the HC, but this relationship was inversed in severe asthma. Together, these data suggest that airway NCR+ILC3s may contribute to a healthy commensal diversity and normal lung function.

Induction of Anti-Aquaporin 5 Autoantibody Production by Immunization with a Peptide Derived from the Aquaporin of Prevotella melaninogenica Leads to Reduced Salivary Flow in Mice

  • Ahreum Lee;Duck Kyun Yoo;Yonghee Lee;Sumin Jeon;Suhan Jung;Jinsung Noh;Soyeon Ju;Siwon Hwang;Hong Hee Kim;Sunghoon Kwon;Junho Chung;Youngnim Choi
    • IMMUNE NETWORK
    • /
    • 제21권5호
    • /
    • pp.34.1-34.16
    • /
    • 2021
  • Sjögren's syndrome (SS) is an autoimmune disease characterized by dryness of the mouth and eyes. The glandular dysfunction in SS involves not only T cell-mediated destruction of the glands but also autoantibodies against the type 3 muscarinic acetylcholine receptor or aquaporin 5 (AQP5) that interfere with the secretion process. Studies on the breakage of tolerance and induction of autoantibodies to these autoantigens could benefit SS patients. To break tolerance, we utilized a PmE-L peptide derived from the AQP5-homologous aquaporin of Prevotella melaninogenica (PmAqp) that contained both a B cell "E" epitope and a T cell epitope. Repeated subcutaneous immunization of C57BL/6 mice with the PmE-L peptide efficiently induced the production of Abs against the "E" epitope of mouse/human AQP5 (AQP5E), and we aimed to characterize the antigen specificity, the sequences of AQP5E-specific B cell receptors, and salivary gland phenotypes of these mice. Sera containing anti-AQP5E IgG not only stained mouse Aqp5 expressed in the submandibular glands but also detected PmApq and PmE-L by immunoblotting, suggesting molecular mimicry. Characterization of the AQP5E-specific autoantibodies selected from the screening of phage display Ab libraries and mapping of the B cell receptor repertoires revealed that the AQP5E-specific B cells acquired the ability to bind to the Ag through cumulative somatic hypermutation. Importantly, animals with anti-AQP5E Abs had decreased salivary flow rates without immune cell infiltration into the salivary glands. This model will be useful for investigating the role of anti-AQP5 autoantibodies in glandular dysfunction in SS and testing new therapeutics targeting autoantibody production.

Correlation between Reactogenicity and Immunogenicity after the ChAdOx1 nCoV-19 and BNT162b2 mRNA Vaccination

  • So Yun Lim;Ji Yeun Kim;Soonju Park;Ji-Soo Kwon;Ji Young Park;Hye Hee Cha;Mi Hyun Suh;Hyun Jung Lee;Joon Seo Lim;Seongman Bae;Jiwon Jung;Nakyung Lee;Kideok Kim;David Shum;Youngmee Jee;Sung-Han Kim
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.41.1-41.13
    • /
    • 2021
  • Correlation between vaccine reactogenicity and immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Thus, we investigated to determine whether the reactogenicity after coronavirus disease 2019 vaccination is associated with antibody (Ab) titers and T cell responses. This study was prospective cohort study done with 131 healthcare workers at tertiary center in Seoul, South Korea. The degrees of the local reactions after the 1st and 2nd doses of ChAdOx1 nCov-19 (ChAdOx1) vaccination were significantly associated with the S1-specific IgG Ab titers (p=0.003 and 0.01, respectively) and neutralizing Ab (p=0.04 and 0.10, respectively) in age- and sex-adjusted multivariate analysis, whereas those after the BNT162b2 vaccination did not show significant associations. T cell responses did not show significant associations with the degree of reactogenicity after the ChAdOx1 vaccination or the BNT162b2 vaccination. Thus, high degree of local reactogenicity after the ChAdOx1 vaccine may be used as an indicator of strong humoral immune responses against SARS-CoV-2.